
C)LEVLL
LIAOC-TR-80-109, VgI I (of two)
knal Technical Repor

April 1980

ADAO 8698- 4 +/
SOFTWARE QUALITY METRICS
ENHANCEMENTS

General Electric Company

,James A. McCall *)
Mike T. V'tsumoto

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITEDJ

DTIC
S ELECTE

JUL 2 2 19 8

B

ROME AIR DEVELOPMENT CENTER US ARMY INSTITUTE FOR RESEARCH IN
AIR FORCE SYSTEMS COMMAND MANAGEMENT INFORMATION AND COMPUTER SCIENCES

GRIFFISS AIR FORCE BASE NY 13441 ATLANTA GA 30332

LU2

:: 807?21 01

This report ::Az been reviewed by the KADC Public Affairs Office (PA) and
: ,eleasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RZADC-TR-80-109, Volume I (of two) has been reviewed and is approved
cr publication.

APROVED:~ 4~ /?(~24

JOSEPH P. CAVANO
Project Engineer

APPROVED: ~ ~

WENDALL C. BAUMAN, Colonel, USAF
Chief, Information Sciences Division

FOR T!IE CMN

JOHN P. HUSS
Acting Chief, Plans Office

If your address ha3 changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RPADC (ISIS), Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing listo

Do not return this copy. Retain or destroy.

UNCLASSIFIED
S E C U R I T Y C L A SS I F I C A T I O N O F T H I S P A G E (W h e . D E . RE eAeDd I N S T R U C T I

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

. R OTRN80-109 V f . GOVT ACCESSION NO 2. RECIPIENT'S CATALOG NUMBER

S. TYPE OF REPORT & PERIOD COVERED
4. TITLE (m Subtitle-) Final Technical Report

SOFTWARE0UALITY)IETRICS ENHANCEMENTS* June 1978 - July 1979
/ 6. PERFORMING OG. REPORT NUMBER

James A. McCall FC/FWIt = 62-7 8-C-9216 'A

S. PERFORMING ORGANIZATION NAME AND ADDRESS - 10. PROGRAM ELEMENT. ROJECT. TASK

0 2,eneral Electric Company - (- AREa WORK UNIT NUMBERS
1. Information Systems Programs 25 202

450 Persian Drive, Sunnyvale CA 94086 _--_

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT OATE

Rome Air Development Center (ISIS) April 1980
1. NUM ER O F

r
PAGES

Griffiss AFB NY 13441 182

14, MONITORIN 3 AGENCY NAME & ADORESSII dl l@ r from. Cotr"ohndn Otfice) IS. SECURITY CLASS. (of this report)

Same ___________________

(A ~So. DECL ASSIFICATION7 DOWNGRADING

I. DISTRIBUTIOI STATEMENT (of thl Report)

Approved for public release; distribution ulimited.

S7. DISTRIBUTION " (oI ebofract entered i Block 20. IF ,dfl.u e Dm1~

Same (V P1,raj 'f Su U 7
IS. SUPPLEMENTARY NOTES

RADC Project Engineer: Joseph P. Cavano (ISIS) 315 330-4325

USACSC Project Engineer: Daniel E. Hocking (AIRMICS) 404 894-3111

IS. KEY WORDS (C'otthe on teverve aide ifnoc.savy aid identiv W block nu=m60)

Software Quality
Quality Metrics
Software Measurement

4S ABSTRACT (Contliue an reverse aide IF necesaey mid ldentify by Week RnUmbo)

Software metrics (or measurements) which predict software quality have
been refined and enhanced. Metrics were classified as anomaly-
detecting metrics which identify deficiencies in documentation or
source code, predLctive metrics which measure the logic of the design
and implementation, and acceptance metrics which are applied to the end
product to assess compliance with requirements..t

DO , JAV7 1473 EDITION Or I NOV IS SOO1ETE UNCLASSIFIED
SECURiTY CLASSIFICATION OF THIS PAGE (P."... e E l<

.0%0.

UNCLASSIFIED

UNCLASSIFIED
StCuURmt CL ASSIPICAYIOU5 OP ' PA~GCWhef Dof. EaIfe.E

PREFACE

This document is the final report (CDRL A003) for the Metrics Enhancement

Study, contract number F30602-78-C-0216. The contract was performed in

support of the Air Force Systems Command Rome Air Development Center and

the U.S. Army Computer Systems Command Army Institute for Research in

Management Information and Computer Sciences.

The report was prepared by Mike Matsumoto and Jim McCall of the Sunnyvale

Operations, Information Systems Programs, General Electric Company. The

Program Manager was Gene Walters. Significant contributions were made by

Sue Ehnert and Bob Hassell.

Technical guidance was provided by Joe Cavano, RADC Project Engineer and

Dan Hocking, USACSC Technical Monitor.

The report consists of two volumes as follows:

Volume I Software Quality Metrics Enhancements

Volume II Software Quality Measurement Manual

*Volume I provides a description of the research activities performed

during the contract. Volume II provides a manual describing how to apply

the metrics oriented toward quality assurance personnel.

ACCESSION for

TIS White Section
DDC Buff Section 1
UNANNOUNCED C3
JUSTIFICATION

Dist. AVAIL mal;*

S"*

•~1 ,• 'l

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS iv

LIST OF TABLES

Section Page

1.0 INTRODUCTION . 1-1

1.1 Report Overview 1-1

1.2 The Concern for Software Quality 1-4

1.3 Factors in Software Quality Task 1-5

1.4 Summary of Findings 1-14

2.0 EXTENSIONS TO THE CONCEPTS OF SOFTWARE QUALITY

METRICS 2-1

2.1 Introduction 2-1

2.2 Products and Services. 2-1

2.3 Classification of Metrics. 2-4

2.4 Comparing Metrics, Walk-Through and Inspection .. 2-5

2.5 Metrics as a Quality Assurance MIS 2-9

3.0 ANALYSIS OF METRIC CONCEPTS IN OTHER ENVIRONMENTS . .3-1

3.1 Approach3-1

. ,3.2 Software Quality Requirements Survey ., . . . 3-3

3.3 Applicability i f Criteria in Other Environments .3-16

3.4 Review of the Metrics 3-17

3.5 Army MIS and Air Force Software Documentation

Requirements Sources 3-29

4.0 APPLICATION AND VALIDATION OF METRICS 4-1

4.1 Application Approach 4-1

4,2 Validation Approach, 4-7

4.3 Validation Results 4-12

44:

A,

* CAt wl.

TABLE OF CONTENTS (Continued)

Section page

APPENDIX A A-1

APPENDIX B......... B-1

REFERENCES .R-1

LIST OF ILLUSTRATIONS

Figure
Number Page

1.1-1 Task Descriptions 1-2

1.3-1 Software Quality Framework 1-6

1.3-3 Relationship of Criteria to Software Quality Factors . . 1-9
1.3-4 Application and Validation of Metrics 1-12

3.1-1 Evaluation Process 3-2

3.2-1 Histogram of Average Scores by Type - Support Software

6 Samples 3-10

3.2-2 Histogram of Average Scores by Type - Simulation

5 Samples..... 3-10
3.2-3 Histogram of Average Scores by Type - Command and

Control 4 Samples 3-11
3.2-4 Histogram of Average Scores by Type - Indications and

WNG 24 Samples 3-11

3.2-12 Summary by Phase - Development Average Scores for 20
Samples With STD Deviation 3-12

3.2-5 Histogram of Average Scores by Phase - Development

20 Samples...... 3-14

32-6 Histogram of Average Scores by Phase - Maintenance

and Operations 19 Samples 3-14

4.1.3-1 Metric Worksheets 4-5
4.1.3-2 Worksheet Coverage , , , , 4"6

4.2.1-1 Example System Change Request , , . , 4-8

4.2.2-1 ISDS Data Collection 4-10

4.3.1-1 Compiler Implementation Anamolies . . . , , , . . , . . 4-14

4.3.2-1 Metric Score Comparisons 4-24

alt

SLIST OF TABLES

: Table
Number Page j

1.3-1 Software Qual-ity Factors 1-8

2.4-1 Comparison of Key Properties of Inspection and
Walk-Thrus and Metrics 2-8

3.2-1 Software Quality Requirements Survey Form 3-4

3.2-2 Response Type Profile 3-5

3.2-3 Summary by Type - Support Software Sum of Scores for

6 Samples 3-6

3.2-4 Summary by Type - Support Software Average of Scores

for 6 Samples With STD Deviation 3-6

3.2-5 Summary by Type - Simulation Sum of Scores for

5 Samples 3-7

3.2-6 Summary by Type - Simulation Average of Scores for

5 Samples With STD Deviation3-7

3.2-7 Summary by Type - Command and Control Sum of Scores

for 4 Samples 3-8

3.2-8 Summary by Type - Command and Control Average of Scores

for 4 Samples With STD Deviation 3-8

3.2-9 Summary by Type - Indications and Warning Sum of Scores

for 24 Samples 3-9

3.2-10 Summary by Type - Indications and Warning Average of

Scores for 24 Samples With STD Deviation3-9

3.2-11 Summary by Phase - Development Sum of Scores for

20 Samples3-12

3.2-13 Summary by Phase - Maintenance and Operations Sum of

Scores for 19 Samples 3-13

3.2-14 Summary by Phase - Maintenance and Operation Average

Scores for 19 Samples With STD Deviation 3-13

3.4.2-1 Accuracy Metric 3-19

3.4.2-2 Accuracy Metric Analysis 3-20

v

TFWF

LIST OF TABLES (Continued)

Table
Number Page

3.4.2-3 Code Simplicity Metric3........3-21

3.4.2-4 Effectiveness of Comnments Measure 3-23

3.4.5-1 Structured Concepts Related to Metrics 3-28

4.3.1-1 Compiler Implementation Anamolles 4-14

4.3.2-1 MARDIS Statistics4-19

4.3.2-2 ISDS Version Comparison Statistics 4-22

4.3.2-3 ISDS Initial Version Statistics 4-23

4.3.2-4 ISDS Sensitivity Analysis 4-25

4.3.3-1 Metric Scores 4-30

4.3.3-2 Normalization Functions 4-31

4.3.3-3 Results of Normalization Functions Analysis (Individual

Metrics Which Exhibited Correlation to Quality

Factors.....4-33

4.3.3-4 Results of Normalization Function Analysis (Individual

Metrics Which Did Not Exhibit Significant

Correlation) 4-34

vi

I

whf

= --77,-7..

Thev purj'ose o-F this resceerch v,,,.s to refine anc' enhance the Software
qu~ality riasr xet rcess that was orirdr. l ly dloc'jnent.& in VT J
-~M-77-369. Tre work covered hy this effort is contalin" in rwo
volumes;. The first volu.ve incl-ices Pxtcensions to the cncprts OF
softwore qualiry reasurement, anolysis; of metric arp]ir-r ions And
va)ir.dartion of retrics for the opality factrors rcrrtability a rvd

have !)eon matde to the software nuality r'etrics haseCd or the '

exreriences of this research st-,iry.

The secox0 volume of thi!7 report, ' t£oftware Cujalitv 1"ea.;surernt
arnua I, i s orientedc toward! the ruality iassurance process and!

idlentifies how to set cuality rmqoels, how andl whcen to ar-rly software
metrics one how to rake a cuality fssessmenr.

Tilis effort w-as initiatedI in responsr' to rMTC Tr'rS, coftware Cost
1r1eduction, in the area of Ouality Measurenent. The effort was
co-sponsoted! hy the USF Army Corbputet Systeils Com-rand3 Prmy Tnstitute
for Pesearch in !.Ana,-en Inonarticn ondl Cor-1-uter !7cifencp.

This work was significa~nt because it verifiedl that n-etrics oric~inpa11y
developer' for Air Force CormandI ond Control app)-i icAt ions weve also
applicable to Arrry ?'Wananement Inforriatic'n F5ystr ari-icat ions. It is
anticipatef! that the metrins will he alicable to other environm'ent~s
as well. In addlition, the normnalization funictions eveloped' for
peortahility .increases the clegree of confidence that can be placed on
the quality rueosura:,ents. T1he Fruitful res,.ltz of this study should

ptoveto beof -cat air! in cornlementinr' existir. software qualit
assurance techniques by provirlir quantitative quality descriptions of

, .71 software Ourinq the developmevint cycle i~self.

JorT/P pCVA'C
Project Pnc~inper

vii
t

flLc

SECTION 1

INTRODUCTION

1.1 REPORT OVERVIEW

The Metrics Enhancements task, contract no F30602-78-C-0216, was conducted

in support of the Air Force Systems Command Rome Air Development Center's
(RADC) and U. S. Army Computer Systems Command's (USACSC) missions to

investigate, sponsor, and develop techniques which enhance the development

of high quality software. The inputs for this effort, the background f

previous related work, the task objectives, and the scope of this final

report are described in this section.

1.1.1 OVERALL TASK OBJECTIVES

The major goal of this research effort was to further test the feasibility

and validity of the concept of software quality metrics established during

the Factors in Software Quality Contract, Contract number F30602-76-C-0417.

In order to accomplish this goal, the following tasks were performed (fig-

ure 1.1-1).

1.1.2 TASK 1: ANALYSIS OF SOFTWARE QUALITY METRICS

The initial task involved analysis of the set of metrics established in

RADC TR-77-369 for applicability to a Management Information System (MIS)

software production environment. The analysis consisted of an evaluation

of each metric with respect to MIS applications and the COBOL programing

language, and was based on lessons learned from the previous effort. In

performing the analysis, the products produced during typical software

developments were identified and the metrics related to those products

here assessed for applicability. In order to provide a complete evalua-
tion of the applicability of the concept of software quality metrics to an

MIS environment, an evaluation of the differences in quality requirements
2between Command and Control (C2) applications and MIS applications was made.

The results of this task are in section 2 of this report.

1-1

4A,-

LLIn

W (

- r Lai~
u-I L' L 0A0J

w CD.Ja Li.J 0- MJ I-.

(JI LL .

o j LA J IA cr Ln(J

0(.. UP 00 a. *!

Ln C) = - w,
LLJ ~ I uj0 04

>. L LAJ U I

Ln ~ ~ ~ ~ LL IA-L A-V

CD 0
0.J Lr UA

I#A

- ~0-
-i

W LLL 0
L 0o9 L., W A 0CV

1-M m r-J4 LA- u- W~

_j -< L~ r0 U -Z -w F

IV IA

U L

0 00 e Lu CM

D. IA U) 0- WI- = -- L-

LW IA LI L .o.
1-~~.4 w W(.JJ00

maJ 0La4 0 '440. w wW

1-2- -

1.1.3 TASK 2: VALIDATION OF THE METRICS
The methodology established in RADC TR-77-369 was utilized to apply the

metrics to the USACSC Modernized Army Research and Developmnt Information
System (MARDIS) development data base as a typical NIS application and to
tb General Electric/Integrated Software Development System (GE/ISDS) main-

tenance data base (see Appendix A for brief descriptions of these data
bases) as a typical software support system. In this context the data

bases refer to all of the documents, flowcharts, and source code associated

with the development effort for these systems. The establishment and vali-

dation of normalization functions (the mathematical relationships which
relate metrics to ratings of the various quality factors) for factors which
were not validated previously were given most attention. Based on the

application of the metrics and the validation process, further refinements

to the metrics were made. The results of this task are in section 3 of

this report.

1.1.4 TASK 3: DEVELOPMENT OF PROCEDURES

Based on the experience gained during the validation, detailed guidelines
and procedures were developed for applying the metrics. These guidelines

and procedures are oriented toward application by Quality Assurance (QA)

personnel and interpretation of the results by program managers. These
results may be seen in the Software Quality Measurement Manual, an attach-

ment to this report.

1.1.6 SCOPE OF FINAL REPORT

This final report represents satisfaction of CDRL A003 of the Metrics
Enhancements contract. It describes the technical effort and results of

the previously mentioned tasks. The report includes a description (sec-

tion 3) of the following:

e Identification of difference in quality requirements between

j typical C2 and MIS "applications.

* Description of documentation produced in Air Force and Army

software developments

1-3I17"4W]m
.44.4'

* Review and refinement of software quality metrics in light of

MIS applications

Extensions of the concept of software quality metrics.

e Results of a validation of metrics using an Army MIS system

and a software support system.

1.2 THE CONCERN FOR SOFTWARE QUALITY

A brief review of the evolution of major areas of concern in the software

engineering field over the last decade and the direction of research pursued

as a result of that concern provides support and a historical perspective of

the current emphasis on software quality.

The genesis of software engineering and structured programming, in terms of

community-wide recognition and publication in the literature, is usually

traced to the 1968 NATO Conference on Software Engineering and Edsgar

Dijkstra. At that conference, Dijkstra noted how encouraging it was to see

the extremely well-qualified attendees admitting that problems existed

in the development of software. He felt that the first step towards solving

the problem was recognizing the problem [DIJE69]. The direction of the

research community during this time period was toward solidifying the con-

cepts of software engineering and structured programming, and identifying

the problem areas of software development [BOEB73], [STR74].

* The Symposium on the High Cost of Software in 1973 sponsored by the three

Services can be viewed as another key event in the expression of major

concerns in the software community. During this conference, the problem

of the high cost of software and the increasing proportion of system devel-

opment costs attributed to software were the focal points [PR073]. The

direction of research in the ensuing years emphasized improving the pro-

ductivity of programmers. This direction manifested itself in the develop-

ment of tools and aids to assist in the very labor-intensive process of

software development. While many significant results have been achieved

in this area, the attack was on a symptom (high costs) rather than a problem,

and in an area which provided relatively low leverage. Programming has been

1-4

#.i.

shown to only account for approximately 20% of the total software develop-

ments cost (Design 40%, Test 40%).

The International Conference on Reliable Software in 1975 was the forum of

a sharper focus of concern [PR075]. Here the theme was software reliabil-

ity and the concern for the very critical problem of unreliable software.

During this time period, the research community responded with error data

collection efforts, error classification studies, reliability modeling

studies in an attempt to bound and define the problem. Many of these

efforts are currently beginning to show results.

Each step mentioned above has provided some progress. Products of this

research during the past decade have had significant impact on the way we

develop software. Where have we evolved since that point? What are the

major research concerns today? 1979 finds us looking at a larger problem -

the quality of our software systems. The quality of software, a part of

which is reliability and a measure of which is cost, has become a major

concern because it has been recognized that software costs do not end at

delivery. The concern now is for life cycle costs, total costs, and user

satisfaction throughout the life of the system, not just at delivery.

Life cycle management and life cycle costs have become the major concerns.

The leverage in this approach can be seen in statistics that identify 60 to

80% of life cycle costs as being post-delivery costs. Thus, a major direc-

tion in research today is software quality with a perspective on software
t from a life cycle viewpoint.

The software quality metrics concepts which are the subject of this report

provide a mechanism for addressing software life cycle considerations.

4" 1.3 FACTORS IN SOFTWARE QUALITY TASK
This effort is a continuation and extension of research in software quality

metrics sponsored by RADC, contract no. F30602-76-C-0417. In that

previous effort a framework for addressing the subject of software quality

and Its measurement was established. This framework, shown in figure 1.3-1,

has three levels. At the highest level, the level at which management

1-5

U,6

w 3
C

LA-J
La

- z

~ Z. -C

LA.

P-41

0,

U.

uEl

Ix.

1-6-

Vi

and users interface with the framework, are management-oriented terms

identifying the major aspects of software quality. These terms, called

quality factors, are shown with thpir definitions in table 1.3-1. At

the next level, sets of attributes of the software which contribute to

the characteristics represented by the quality factors are identified.

Then, at the lowest level, are quantitative measures, metrics, of those

attributes. All of the attributes, or criteria, are shown in figure 1.3-3

as they relate to the factors. The metrics are discussed later in sec-

tion 2. This framework and the definitions represent an hierarchical

definition of software quality, the hierarchy involving different levels

of detail and different orientations or viewpoints of software quality.

Another product of the previous effort was the establishment of a method-

ology for the validation of the metrics. This methodology consists of

the following steps:

(1) Application of the metrics to the products generated during a

software development. The products include documentation such

as requirements specifications, design specifications, test

plans, users manuals, as well as the source code.

(2) Utilizing development and operational historical data, rating

of the software by quality factor can be derived. Using these

ratings as dependent variables and the values obtained from the

application of the metrics as independent variables, a multi-

variate regression analysis can be performed. The resulting

P, equation, a normalization function, provides a mathematical

relationship between the metrics and the quality factors.

(3) Validation of these normalization functions was performed by

plotting the same data (ratings and metric values) for other

0 ' systems or modules and deciding whether they fall within a 90

percent confidence interval. The 90 percent confidence interval
was chosen as the validation criteria because it provides suf-

ficient precision for analysis to be done using the normaliza-
tion functions.

1-7

, .,,. y ... ,_0

Table 1.3-1 Software Quality Factors

FACTORS DEFINITIONS

CORRCTNESS Extent to which a program satisfias Its specifications

and fulfills the usar's mission objectives.

RELIABILITY Extant to which a program can be expected to perform Its

Intended function with required precision.

INITIAL
PRODUCT EFIICIENCI The amount of computing resources and coda required by a
OPERATION

program to perform a functi on.

INTEGRITY Extant to which access to software or data by unauthor-

ized persons can be controlled.

USABILITY Effort required to learn, operate. prepare input. and

interpret output of a program.

LI FE
CYCLE MAINTAINABILITY Effort required to locate and fix an error in an
STAGES

Ioperational program.

PREOISIT TESTABILITY Effort required to test a program to insure it perform
its intended function.

FLEXIBILITY Effort required to modify an operational program.

PORTABILITY Effort required to transfer a program from one hardware

configuration and/or software system environment to

another.

PRODUCTIO REUSABILITY Extent to which a program can be used in other applica-

tions - related to the packaging and scope of the

functions that program perform.

INTEROPERABILITY Effort required to couple one system with another.

CORRECTNESS

Tr a caa bility Consistency Caffoetees

RELIABILITY

Error Tolrance Consistency - Accuracy Simlic

EFFICIENCY

Execution Efficiency IStorae Efficiency

LEGEND
SFactorINERT

Criteria

r Access Control Acss Audit

USABILITY

Training Coummnicativeness Operability

SMAINTAINABILITY

CConsistency Simplicty7 Concisenes~s Mo~dularity Self-Mecriptivees

I 1329A-2
Figure 1.3-3 Relationship of Criteria to Software Quality Factors

t1-9

4.7

Geeatul it Modulrity Sotware SyEmpa Machiity ne De self-cptiveness

ITESTABRI LITY

Modu~mlr ity ConwjnicaHtyIonstrunaiont Data Commarit

Feeaigu Modu latiosifCrrat Software Qute achity Factoscnptid
Inepnene10dec

INERP*AILT

This methodology is illustrated in figure 1.3-4.

Two other results of the previous effort were the identification of auto-
mated support tools which could be utilized to apply the metrics and the

documentation of a preliminary handbook. The handbook was oriented toward

an acquisition manager and described our concept of software quality and

three approaches (each one more detailed than the other) for specifying

and measuring software quality. These results are the assumed starting

point for this current effort.

This previous research indicated that the concept of measurable software

quality was a pragmatic approach to improved software. However, the
experience with the metrics was limited to the command and control environ-

ment of the Air Force. Major differences exist in the factors essential

to software quality between a Command apd Control (C) System and a Man-

agement Information System (MIS). In the former, the emphasis may be on

reliability and efficiency; in the latter, the emphasis may be on porta-

bility and maintainability. These differences require that additional

experience be gained in the use of metrics in other environments and with

different applications.

An additional deficiency exhibited by the previous research in software quality

that a broad based confidence in all of the quality factors/metrics had

not been achieved. The two Air Force software systems used in the previous

study had not experienced some of the activities necessary to validate

metrics related to certain quality factors. As an example, neither system

had been moved to another environment and therefore none of the metrics
* ;associated with the quality factor, portability, were able to be validated.

The USACSC's recent experience in transferring systems to other hardware

*environments and investigation into the portability of software provided

an excellent basis for validation and refinement of the metrics related

to portability.

The USACSC Modernized Army Research and Development Information System (MARDIS)
-I data base affords an excellent testbed for the application of software

metrics in an MIS environment. In addition to utilizing the MARDIS system

1-11

,: . , 1 -I

eI

to t

i i ! -

Ii
* I-

* I

eI U'EEAI Iv !i *+0

I I

m E E m 9 2 ,-"1 t

:too .

, -.- +;I 4 -

V -J' i - U 0

B ,, 11 II

. ... - '; +, "I

1-12

"; 0

Isa". 0

as an example of an MIS system, a state-of-the-art software support system

(GE/ISDS) developed at GE/Sunnyvale was also analyzed. This system was

transferred to a number of GE locations and data was collected on the
effort required to accomplish the transfer. Utilization of this data pro-

vided experience in applying the metrics to a software support system
environment and allowed additional validation of metrics related to port-
ability and maintainability.

£

4

1-13

*7A

1.4 SUMMARY OF FINDINGS

As a result of the metrics Enhancement study the following conclusions

can be stated (reference is made to paragraphs in this report providing

supporting data):

1) The framework established in RADC-TR-77-369 is applicable to

other environments and provides a useful life cycle management

viewpoint to software system requirements specification (2.2)

2) The metrics established in RADC-TR-77-369 have now been applied

to two JOVIAL command and control systems (-. 40,000 lines of

code), to a financial management information system (,v 54,000

lines of code), and to a FORTRAN software support system

(' 20,000 lines of code) (3.1)

3) The metrics and the metric worksheets created for their manual

application provide a quantitative evaluation tool for quality

assurance personnel (2.6.3, 3.3.1 Vol. II).

4) Sensitivity Analyses based on the quantitative measures provide

an immediately applicable quality assurance technique (3.3.2)

5) The concept of Software Quality Metrics is supported by statis-

tical analyses although because of limited samples, further

research is needed before a high degree of confidence can be

placed on the mathematical relationships established to date
l (3.3.3)

6) Because techniques derived during the software metric research

seem to have potential as quality assurance tools, a Software

Quality Measurement Manual has been developed to provide

guidance for establishing quality goals for a software develop-

ment and measuring the programs toward those goal during the

development (Vol II).

~p1~ 1-14

SECTION 2

EXTENSIONS TO THE CONCEPTS OF SOFTWARE QUALITY METRICS

2.1 INTRODUCTION

Recent literature in the field of Software Engineering has placed increased

importance on Life Cycle Management. The realization that software has

become the most expensive factor in computer systems has caused the emphasis

on the efficient management of the software life cycle.

Throughout this report we will discuss the concept of software quality in

the context of the MIS environment and the C2 environment. In terms of

extending these concepts to a full program for the management of the quality

of software, however, we may take different perspectives on the nature of

software systems. These perspectives are normative and based on the goals

of the organizations which develop software; they should not be construed

as absolute pronouncements on the nature of software.

2.2 PRODUCTS AND SERVICES

Software developers have a tendency to view programs as static, finished

products once they have gone into the operational phase of the life cycle.

Most of us, however, are well aware of the fact that this is a chimera, that

in fact, software has a complete life cycle and goes through maintenance and

enhancement phases before its final obsolesence.

Users of software systems have a different outlook. Software usually per-

forms a service for the user and, developers then become the providers of

the system which provides the needed service.

In the C2 environment, where software systems generally are part of larger

(embedded) systems, the product orientation is a convenient one which allows

programmers, engineers, and users to manage the life cycle with respect to

the product in which the software is embedded.

Of particular importance in the MIS environment, however, is the fact that

* the development staff almost invariably acts as a support unit to the

primary function of the organization. For the most part, the programs are

2-1

*k

S - II 1 1 1 " I"

not in themselves the products which the user organization ultimately
produces. In this sense, the developer's staff performs a service for the
rest of the organization, and so the task of the developer's staff is one
of providing that service to the functional (user) components of the

organization. User components are not in themselves interested in the

technical aspects of programing, or even in that of systems analysis,
but in the systems provided to them, and the way those systems service

their needs.

This is significent for the reason that the user will make systems decisions

based on only one criterion from the developer's viewpoint. If the system
adequately serves the needs of the user, even if the system is of low tech-
nical quality, the user will be hesitant to authorize expenditures for a
replacement system whose quality is much higher, and which might provide

better service. Similarly, if the system does not supply adequate service

to the user, and will entail significant replacenent costs as well as tech-
nical complexity, the user will more readily authorize the expenditure of

funds in order to alleviate his immediate need for adequate service. Thus,
while the developer sees the quality of the system in many lights, in terms
of error rates, error tolerance, readability, ease of debugging, etc., the

user perceives the system in only one way - how well it meets his needs.

To the developer, these characteristics obviously have a cumulative effect

on the user's perception of the quality of the system, but for the most part

user's do not have this awareness since it requires that they have some
exnerience in the technical aspects of systems development in order to be
aware of the problems associated with the task. It is the responsibility of

the developer to be aware of the user's needs, his perception of what a qual-

ity system is and to develop the system in consonance with those perceptions.
This often is not a simple task, since perceptions can change in time. Thus,

a user may gain maturity in his appreciation of systems if exposed to "user-

friendly" systems, or may become less systems oriented after being exposed

to systems which are difficult to work with.

2-2

V!

At the highest level of our quality metric framework, some of the required

translation between user and developer can be accommodated. The quality

factors show relevancy of technical aspects of the software to the user's

needs over the life cycle of the system. Utilizing the factors, the user can

appreciate the impact of a system which is unreliable, or hard to maintain,

or hard to change. The user sees this impact in terms of cost, the user's

ultimate measure, and its effect on the service the system provides.

Thus, it is beneficial to organizations to view software developers as pro-

viders of services over long period of time. Many large management infor-

mation systems are developed with planned life spans of ten years. The

enchancement or rewrite of such systems are large undertakings requiring

the investigation of down-stream processing impact. If one views software

systems as services, then one can view such problems in light of their impact

on the provision of service to users and customers, thus on the entire

organization, rather than on individual modules or subsystems. This enables

managers to make more rational decisions based on an overall organizational

viewpoint.

An important point to note, related to the nature of organizations, is that

change is unavoidable. Military organizations and systems change as missions

change and it follows that information systems which they use must change

with them.

A corollary to this is the fact that the tendency of software managers to

engage in "plant protection." i.e., trying to avoid changing software systems

if at all possible (while positive in some instances) can have a detrimental

impact on the overall goals of the organization.

r.
Products go away after a time. Sometimes the life span is long, such as the

B-52 or the Volkswagen "Beetle, " but eventually they are replaced by new

products. The need for specific services lasts a very long time. This long

life span is a problem which an awareness of the service perspective gives

in the application of quality metrics. The use of metrics throughout the

2-3

X. '.

the life cycle gives us a method for effectively specifying and monitoring
the delivery of service to the user during the operational/maintenance

phase of the life cycle.

2.3 CLASSIFICATION OF METRICS

The actual measurement of software quality is accomplished by applying

software metrics (or measurements) to the documentation and source code

produced during a software development. These measurements are part of

the established model of software quality and through that model can be

related to various user-oriented aspects of software quality.

The metrics can be classified according to three categories:

e anomaly-detecting

* predictive

e acceptance

Anomaly-detecting metrics identify deficiencies in documentation or source

code. These deficiencies usually are corrected to improve the quality of

the software product. Standards enforcement is a form of anomaly-detecting

metrics.

Predictive metrics are measurements of the logic of the design and imple-

mentation. These measurements are concerned with form, structure, density, and

complexity type attributes. They provide an indication of the quality that

will be achieved in the end product, based on the nature of tne application,

and design and implementation strategies.

Acceptance metrics are measurements that are applied to the end product
to assess the final compliance with requirements. Tests are a form of

acceptance-type measurements.

The measurements contained in Appendix B are either anomaly.detecting or

predictive metrics. They are applied during the development phases to
assist in identification of quality problems early so that corrective actions

can be taken early when they are more effective and economical,

2-4

pAM
-I "- .. .

The measurement concepts complement current Quality Assurance and testing

practices. They are not a replacement for any current techniques utilized

in normal quality assurance programs. For example, a major objective of

quality assurance is to assure conformance with user/customer requirements.

The software quality metric concepts described in this manual provide a

methodology for the user/customer to specify life-cycle-oriented quality

requirements, which are usually not considered, and a mechanism for measuring if

those requirements have been attained. A function usually performed by

quality assurance personnel is a review/audit of software products produced

during a software development. The software metrics add formality and

quantification to these document and code reviews. The metric concepts

also provide a vehicle for early involvement in the development since there

are metrics which apply to the documents produced early in the development.

Testing is usually oriented toward correctness, reliability, and performance

efficiency. The metrics assist in the evaluation of other qualities like

maintainability, portability, and flexibility.

2.4 COMPARING METRICS, WALK-THROUGHS AND INSPECTION

Over the past ten years, a number of different quality assurance or soft-

ware design methodologies have been developed in response to the problems

which both the Government and the private sector have experienced in obtaining

and producing quality software, In a field as complex as software engineering,

the dogmatic adherence to one or another methodology is counter productive;

as methodologies evolve in response to the problems, borrowing and sharing

of ideas produces hybrids which will be more capable of coping with theI problems.

Two methodologies related to software metrics are Code Inspections and

Structured Walk-throughs. Both were originally developed to aid in what
is essentially the quality assurance function. In this section we will com-

pare them with software metrics and point out their shared strengths and

weaknesses and the stages of development during which they are most effec-

tively applied.

.,+ 2-5

m__-iaa

CODE INSPECTIONS

The Code Inspection technique was developed by Fagan (FAGM76]. It has primarily

one purpose, finding errors in design or code. The methodology associated

with code inspections consists of conducting a series of inspections

during the software development, one at the completion of the design stage,

one at the completion of coding, and subsidiary ones (e.g. publications

inspections) throughout the IBM-defined levels of programing process

operations.

Fagan divides the "programing process" into three different subprocesses

(or "miniprocesses): Design, Code, and Test. A seperate unnamed sub-

process consists of a statement of objectives. Each subprocess is divided into

"Levels". There are nine levels, numbered 0 through 8. The purpose of code

inspections is to control the programming process by determining when "exit

criteria" for a particular subprocess or level are satisfied. The major

inspections occur at the completion of Design and Code subprocesses.

"Reworking" of the unit when errors are found in any level or subprocess

must be done before it can be claimed to be completed,

Code inspections concentrate on error detection and correction through a

formally defined "process-control" methodology.

WALK-THROUGHS

Design Walk-Throughs have no agreed upon structure common to all groups which

make use of them. In some installations, the Walk-Through is structured

like the Code Inspection, in others there is little or no structure. The

primary idea, however, is the same everywhere, and that is peer-review of the

system design and coding. Walk-Throughs can be conducted at both the design

stage and during coding.

These peer-reviews ane generally conducted as a team meeting, with representa-

tives of the designers (and coders in a code walk-through), sometimes manage-

ment and users. The purpose is to subject the design (or code) to a critical

evaluation.

2-6

L -

IBM defines eight basic characteristics to the Walk-Through (IBM 74]:

* Arranged and scheduled by developer

* Not used for employee evaluation

* Participants include all involved areas

* Should have a defined set of attainable objectives

* Review materials distributed in advance of meeting and reviewers

should come prepared with questions

e Roles of reviewers and tasks to be performed are known to

parti ci pants

9 A moderator controls the course of the Walk-Through and compiles

the list of errors and inconsistencies to be acted on

* Problem resolution takes place outside of the Walk-Through

INSPECTIONS, WALK-THROUGHS AND METRICS

The application of software metrics is not meant to supplant useful methods
of quality assurance such as Code Inspection and Walk-Through, but to be

used in conjunction with them as part of an intergrated program. Soft-

ware metrics as we have noted previously have both anomaly-detecting and

predictive characteristics, in addition to those which may be classfied

as acceptance metrics.

Code Inspections and Walk-Throughs are oriented towards anamoly-detection.

They can be very useful during certain phases of the development life cycle.

They are development team techniques. The metrics, on the other hand, not

only can be used by the development team but also can be used by the acquisition

manager as acceptance criteria. A complete comparision between metrics,

walk-throughs, and code inspections is shown in Table 2.4-1, Part of this

ptable was excerpted from [FAGM 76]. A comparision of walk-throughs and

code inspections based on a classroom experiment was presented in [MYEG 78).

2-7

JEW

TABLE 2.4-1

;,umparison of Key Properties of Inspections and Walk Thrus and Metrics

Properties Inspection Walk-Thru Metrics

1. Formal Moderator Training Yes No No

2. Definite Participant Roles Yes No Yes

3. Who "Drives" The Insp. or Moderator Owner of Quality
W-T Material Assurance

(Designer Group
or Coder)

4. Use "How to Find Errors"
Checklists Yes No Yes

5. Use Distribution of Error

Types to Look For Yes No Yes

6. Follow-Up to Reduce Bad Fixes Yes No Yes

7. Less Future Errors Because of
Detailed Error Feedback to
Individual Programmer Yes Incidental Yes

8. Improve Inspection Efficiency
From Analysis of Results Yes No Yes

9. Analysis of Data Process
Problems Improvements Yes No Yes

10. Lifecycle Impact and
Applicability? Partial No Yes

11. Quantification of Results
For Comparative Purposes No No Yes

12. Prediction of Quality Level Methodology
Based on Current Analysis
and Figure of Merit? No No Exists

13. Formal Definition of Quality
(Factors, Attributes)? No No Yes

14. Formal Validation of Concept Partial (lack
Carried Out? of quantifiable

results makes
it difficult to No Yes
statistically
validate)

15. Formal Methodology for
Application Developed? Yes No Yes

16. Applicable in Different
Environments Yes Yes Yes

2-8

2.5 METRICS AS A QUALITY ASSURANCE MIS

Current Quality Assurance programs include configuration management systems

which control versions of the software and modifications to baselines. A

problem report control system is usually a part of many of these systems

with which problem reports are formally logged, reported, and closed.

These tools have aided quality assurance personnel not only by providing

automated support to activities that are performed during a development

but also from a historical viewpoint. They provide a data base from which

analyses of error types and error rates can be made. Based on these anal-

yses, the emphasis of testing can be changed during future developments.

In a similar manner, the metrics data provides a profile of the technical

aspects of the software. Such data as number of lines of code, number

of comments, number of paths through a module, etc. also provides a

data base from which analyses can be made to better orient the quality

assurance program to controlling the quality of the software produced.

The control is imparted by audits, standards and conventions, and tests.

Emphasis in each of these activities can be oriented based on past develop-

ment experiences. The metric data base base provides hard data upon which

to base the reorientation rather than basing it on subjective feelings.

Thus the metric data are not only useful during a development as indicators

of the quality being achieved but also complement configuration management

and problem history data as a quality assurance management information

system. The retention of the metric data in machine readable form is

• a key to the utility of the data for this purpose.

2-9

SECTION 3

ANALYSIS OF METRIC CONCEPTS IN OHER ENVIRONMENTS

3.1 APPROACH

The analysis of the applicability of the software quality metrics to
environments other than the command and control environment in which the met-
rics were intially developed is a two-step process. The first step involves

an assessment of the new environment and its real attributes (system life

cycle, users needs, and development environment), a comparison or derivation
of an analogy between these real attributes with those of the C2 environment,

and an evaluation of how well the model of software quality represented by
our framework and definitions fit this new environment. This process is

shown in figure 3.1-1.

The evaluation process represents the derivation of an hypothesized analogy

between the model of software quality developed for the C2 environment and
a broader, more general model (the refined model) which subsumes both the

7C 2 and MIS environments. This latter model has its basis in certain

observed characteristics (real attributes), which are common to both the C2

and MIS environments. This analysis was performed as Task I of this research

effort and is the subject of this section of the report. In actually con-
ducting this evaluation, we proceeded by analyzing the applicability of

each factor, then each criterion and finally each metric. The number of

changes made to the model will be shown to be minimal, primarily because a
goal of the previous effort was to establish metrics which were language

independent.

The second step was performed during the final phase of the research effort.
This step involved the direct application of the same methodology used

during the previous effort to apply the metrics and mathematically validate

their correlation with the qualities of the system as represented by its

operational and maintenance historical data. The results of this step are

contained in the next section.

3-1

I WON-7

. 10-

I-)I

L LZJ - -J~21.

4'

A ULA
Li21.

5$---

21..

~~~. IC' -j z-~J

3-2-

ja 6i-



3.2 SOFTWARE QUALITY REOUIREMENTS SURVEY

In order to perform a thorough evaluation of the applicability of the

software quality metrics to other development environments, each level of

the framework must be investigated in light of the peculiarities of each
particular environment. This section describes the approach and the results

of our evaluation at the quality factors level.

At this level, an evaluation of the applicability of the quality factor to

the particular environment is necessary. Each of the eleven quality factors

were evaluated with respect to the Army Computer Systems Command development

environment and particularly the development of the MARDIS system. There
were no indications that any new factors were necessary. Each of the current

factors seemed applicable. In evaluating the support software system, the

same conclusions were made.

It would be naive, however, to expect that those factors which are critical

to one environment would be equally critical to another. In fact, much can

be learned about a system and the usefulness of the software quality metrics

concepts by simply looking at the differences between systems in light of

the quality factors. For example, in paragraph 3.2 of RADC TR-77-369, the

importance of the individual quality factors was discussed in relationship

to various examples of systems, ranging from testbed or R&D laboratory

systems to airborne avionics and manned spacecraft. To accomplish this

evaluation during this effort, a brief survey (see table 3.2-1) was provided

to personnel at the Air Force Electronics Systems Division (ESD). The

intent of the survey was to solicit the viewpoints of personnel concerning

which quality factors are important to the particular system on which they

are currently working. Most responses from ESD involved indications and

warning systems.

3-3

. IBM'

L VI



Table 3.2-1 Software Quality Requirements Survey Form

1. The 11 quality factors listed below have been isolated from the cur-
rent literature. They are not meant to be exhaustive, but to reflect
what is currently thought to be important. Please indicate whether
you consider each factor to be Very Important (VI), Important (I),
Somewhat Important (SI), or Not Important (NI) as design goals in the
system you are currently working on.

RESME FACTORS DEFTNIT!ON

CORRECTNESS Extent to which a progrm satisfies its
specifications and fulfills the user's
mission objectives.

RELIABILITY Extent to which a program can e expected
to perform its intended function withrequired precision.

EFFICIENCY The amunt of commuting resources and code
required by a program to perform a function.

INTEGITY Extent to whicn access to software or data
by unauthorized persons can be controlled.

USA8ILITY Effort required to learn, operate, prepare
input, and interpret output of a program.

_MAINTAINABI:-rY Effort required to locate and fix an error
in an operational progrm.

TESTAILI Effort required to test a program to insure
it perform its intended function.

_______FLEXI3ZL.M Effort required to .1dify an oerational
prgrm.

PORTABILITY Effort required to transfer a program from
one hardware configuration and/or software
system environment to another.

_______ ELISAB1UTY Extent to which a program can be used in other
applications - related to the packaging and
scope of the functions that program perform.

INTEPERAILTY Effort required to couple one system with
another.

2. What type(s) of application are you currently involved in?

3. Are you currently in:

1. Development phase
2. Operations/Maintenance phase

4. Please indicate the title which most closely describes your position:

1. Program Manager
2. Technical Consultant
3. Systems Analyst
4. Other (please specify)

3-4

0 A " -



The survey sheet that was sent to ESD was also distributed to several

projects in process at our location. These projects represent command
and control, support software, and simulation applications.

Thirty-nine responses were received. The profile of these responses

by type of application is shown in table 3.2-2

Table 3.2-2 Response Type Profile

NO. TYPE COUNT

1 SUPPORT SOFTWARE 6
2 SIMULATION 5
4 COMMAND & CONTROL 4
6 INDICATIONS & WNG 24

The responses were grouped by type of application initially. For each type,

the responses were summed, averaged and a standard deviation for the range of
responses for the ratings of the quality factors was calculated. Factors

were rated very important, important, somewhat important, or not important as

design goals by each respondee. These ratings were given the values

four (4) through one (1) respectively.

Histograms of the responses by type of application were also generated for

visual comparison between types.

The responses were then grouped by the phase the responder had participated
in with respect to the subject system. For each phase the sum, average

and standard deviation of the responses were calculated. Twenty responses

were grouped in the development phase and 19 were grouped in the maintenance

phase.

Histograms were generated for comparison between the two phases.

The results of the analysis are given in the following paragraphs.

3-5



3.2.1 SUPPORT SOFTWARE

Tables 3.2-3 and 3.2-4 give the sum, average and standard deviation for 6

responses about a software development support system which has been deve-

loped in Sunnyvale. It is operational and has been distributed to a number

of different sites on a number of different hardware configurations. The

concern for usability reflects the requirement that the system will be

"user-friendly" enough to be an effective development tool. Similarly,

the concern for portability represents the difficulty of the conversion

process and the desire to transfer the system to a number of GE develop-

ment environments. Reusability is important in this environment because it

is part of an R&D effort in which prototype tools are developed and

evaluated. Those capabilities which users identify as worthwhile are kept

and further developed into a final product. The ability to "reuse" parts

of the software is important.

Table 3.2-3 Summary By Type - Support Suftware
Sum of Scores For 6 Samples

USAPIL.'TY 23
REI I ARILITY 2. 1.
MA I NTAINAB]: L. ITY 21.
F']RTA)BI ITY 21
CORRECTNESS 20
REUSAB]...ITY 20
FL.EXIBI:L.ITY 19
T E S T A:I:* L. IJTY i. 5
I N'T E RO'I::EI.-RAB I IL. IT Y 15
FF I CIEN(Y 1..0

I NTEGR]T*'Y 8

Table 3.2-4 Summary By Type - Support Software
Average of Scores For 6 Samples With STD Deviation

USABIL ITY 3.83 0.41.
RIELIABILI TY ,. 5 0. 55
MAINTAINAE4IL.ITY 3.5 0.55
PO R'rABII..ITY 3.5 0. 84
CORRECTNIESS 3. 33 0. 52
I"ZIEUSABTI..I'IY 3.33 0. 82
I:LEXIB]Ir'T'Y 3. .7 0. 41.
TESlTABIL 'f'Y 2. 5O.5

N T R OFE A I T .IY 2.5 1."

IEFF I C II.:NC'Y 1.67 02
INTEGRITY 1 0

3-6

-b 4

-b.,,' ", - p



3.2.2 SIMULATION
Tables 3.2-5 and 3.2-6 provide the results of 5 survey responses for a simula-
tion system developed in Sunnyvale. The system is utilized as a planning tool

by analysts. The high requirements for correctness and reliability represent

the fact that the output of the simulation system assumes a critical role in

the planning and operation of the actual system being simulated. The concern

for usability reflects that system's use by analysts and the importance given
to its interaction with customer-users.

Table 3.2-5 Summary By Type - Simulation
Sum of Scores For 5 Samples

C ORR ECTNESS 20
RELIABIL.ITY 20
USABIL.ITY 18
MA INTAINABIL.ITY 16
FESTABII.T'rY 14
FLEX I:.IIITY 1.4
1EFF I CINCY 1.2
I NrEGR ITY 1.0
.[ NTEROPERADILI..I'Y 9
F'ORTABIIL.J:'Y 7
REUSARILITY 5

Table 3.2-6 Summary By Type - Simulation
Average of Scores For 5 Samples With STD Deviation

CO R RECTNESS 4 0
RE-L IABILITY 4 0
USABILITY 3.6 0. M.
MAINTAINABILI'Y 3.2 0. 45
TESTABILITY 2.8 0.45
FLEXIBILITY 2.8 1.1
IYFICIENCY 2.4 0.55
:INTEGRITY 2 1.41.
INTEROPERAEILITY 1. 8 1. 3
F::.ORTABIIITY 1.. 4 0 1-55
REUSABII..VrY 1. 0

3-7

a 0.



I
The simulation system is an operational system. Thus maintainability is

also an important concern. In addition, for certain analyses, modifications

are required. Therefore flexibility and testability are also important.

3.2.3 COMMAND AND CONTROL

Tables 3.2-7 and 3.2-8 provide the results of the four responses related to

satellite command and control systems which have been developed or are being

developed in Sunnyvale. The fact that correctness, reliability, and testability

are all rated very high tends to reflect the fact that the C2 software is crit-

ical to the success of the mission of tie system. The systems, once developed,

are also maintained by GE for the Air Force, undergo major revisions and

operate on relatively small (in Storage) machines. These characteristics

are represented by the high rankings given flexibility, efficiency, and
main tainabilIity.

Table 3.2-7 Summary By Type - Command & Control
Sum of Scores For 4 Samples

CORRECTNFESS 16
R E L I A B 11... T. .;
TESTAD IIL.J TY
I L E X II:.. ITY 1.3

F F I C :1: I:iNCY 2
MAINTONAB:-I_. TY2
USAB II...ITY 1.0
T NTEGRI'ITY 3
R E U S AEI4 L, ITY 6
I N T E R01I:I:I.:AI B I... I
Ip0(RTAB Ll...ITY 5

Table 3.2-8 Summary By Type - Command & Control
Average of Scores For 4 Samples With STD Deviation

C(] R R EC'NE:Ss 4 0
I:IEL I ABIL.ITY 3.7'5 0 .5

H_ E X I B I. TY 3.15 0 15

F I C IIENCY .'4 0 i9
i"A V N T AI NA I.A j1... I TY 0(. 32
US ABI]: L[TY 5
'N TEGRITY .

I: .II S A B II....[ ' 1
I N TERO I".RV _5I..j:TY
'- R TAB ]:I..]Ty I ,)

3-8

A..



VO2
3.2.4 INDICATIONS AND WARNING
Tables 3.2-9 and 3.2-10 present the results of the 24 survey responses received
from ESD. The results are similar to the Command and Control software except for
the high ratings given interoperability and usability. The requirements for
effective man-machine interaction and system to system interaction so important

to an indications and warning system is expressed by these ratings.

Table 3.2-9 Summnary by Type - Indications and warning
Sum of Scores for 24 Sampl'is

CORRECTNESS 93
RELIABILITY 90
MAINTAINABILITY 75
I NTERoIERABILITY 7
USABILITY 72
TESTABIL ITY 72
FLEXIB8ILITY 70
I NTEGRI TY 67
HF F ICI ENCY 66
1FORTAB IL1.Y 46
REUSABIL.ITY 41

Table 3.2-10 Sunmmary by Type - Indications and warning
Average of Scores for 24 Samples with STD Deviation

CORRECTNESS 3. 88 0.45
REL IA BI LITY 3.75 0.53
MAINTAINABILITY 3.13 0.65
:I N TE R OERAB IL. ITY 3.04 1.08
USABILITY 3 0.88
TESTABIL.ITY 3 0.88
IP~LEX IBILITY 2.92 0.88
INTEGRITY 2.79 1.02
EFFICIENCY 2. 75 0.85

I~ORABIITY1.92 0.97
REUSABILITY 1.71 0.75

3-9

IL.



To facilitate comparison of the expressed quality requirements by type,

histograms for each type are provided in Figures 3.2-1, 2, 3, and 4.

Figure 3.2-1 Histogram of Average Scores by Type - Support Software

6 Samples

4-

3/-

CRRE:L E:FF INT USA MNT TiE:S F*L-X Fi'r REU IOP

Figure 3.2-2 Histogram of Average Scores by Type -Simulation

5 Samples

4- 1:

2 1/ :/I /I

COR REL. E:FF INT LiSA MNT TES FLX PRT IREL I OF

3-10

-MAO,/ / / /

- / /I I / /I /I /- /I/



Figure 3.2-3 Histogram of Average Scores by Type - Conand & Control
4 Samples

4- I,
11 :/:
/: I: _.. / /:

(:,)R IREL ElF I INT USA MNT T IES FLX IRT RE TOP

Figure 3.2-4 Histogram of Average Scores by Type -Indications & WNG
24 Samples

4- 11

COR REL EFF INT USA MNT TES FIX /IRT REU OP

3-11

/- - / I / II / I I



3.2,5 DEVELOPMENT PHASE

Tables 3.2-11 and 3.2-12 provide the statistics of 20 responses spanning all of

the previously mentioned application types. These responses were from personnel

involved in the development of the system. Note the concern for testability

which to some extent reflects their concern for the immediately succeeding

phases of the development.

Table 3.2-11 Summary By Phase - Development
Sum of Scores For 20 Samples

CORRECrNESS 80
RELIABILITY 77
TESTABILITY 62
INTEROF'ERABILITY 60
MAINTAINABILITY 59
USABILITY 58
FLEXIBILITY 58
EFFICIENCY 54
INTEGRITY 54
PORTABILITY 36
REUSABILITY 34

Figure 3.2-12 Summary By Phase - Development
Average Scores For 20 Samples With STD Deviation

CORRECTNESS 4 0
RELIABILITY 3.85 0.49
TESTABILITY 3.1 0.91
INTEROPERABILITY 3 1.08
MAINTAINABII.ITY 2.95 0.89
USABILITY 2.9 0.91
FLEXIBILITY 2.9 0.72
EFFICIENCY 2.7 0.73
INTEGRITY 2.7 1.03
PORTABILITY 1.8 0.89
REUSABILITY 1.7 0.73

3-12

S- AA



3.2.6 MAINTENANCE PHASE

Tables 13 and 14 provide the statistics of 19 responses, again from a number

of different types of applications, for personnel involved in the operations

and maintenance phase. Note the concern in this phase focuses on the main-

tainability, usability, and flexibility of the software.

Table 3.2-13 Summary by Phase - Maintenance and Operations
Sum of Scores for 19 Samples

CORRECTNESS 69
RELIABILITY 69
USABILITY 65
MA I NTAINABILITY 65
FLEX IBILITY 58
*rTE STALITY 54
EFFICIENCY 46
PORTABILITY 43
I N T E ROPE.RABI LI TY 43
I N T E GR ITY 39
REUSABI" I. *:Y 38

Table 3.2-14 Summary by Phase - Maintenance and Operation
Average Scores For 19 Samples With STO Deviation

CORRECTNESS 3.63 0.6
RELIABILITY 3.63 0.5
USABILITY 3.42 0.69
MAINTAINABILITY 3.42 0.51
FLEXIBILITY 3.05 0.91
TESTABILITY 2.84 0.69
EFF IC IE:NCY 2.42 1.02
PORTABILITY 2.26 1.24
INTEROPERABILITY 2.26 1. 28
INTEGRITY 2.05 1.22
REUSABILITY 2 1.2

3-13

$ "V
• " i



For comparison between phases, Figures 3.2-5 and 3.2-6 are provided.

Figure 3.2-5 Histogram of Average Scores by Phase - Development
20 Samples

4- I/!

3- 1,/: 1/1,I/I s/s I II

I 5.I S/ US i/' I 5/ :.' 5/

1- II, 1':i 1 Id' 1 1.I p I .' .. ._. i-, .
:I 1I i/ I/ I/ I/ Iu Ir ,' II I

I/ I,' I/ 5/ I I.' :I s/ I 5/: 5/

COR REL EFF INT USA MNT TES FL.X F'RT REU IOF'

Figure 3.2-6 Histogram of Average Scores by Phase - Maintenance & Operations
19 Samples

4-

S /I /I I/I /I'

3- 1/1 5/ 11 //

C/, / I / I / /I i/l U/A M TS.

1 /I 5/I 5/I ./55 1 /1 /5 /I 5,Jl

9,I /I 1/I 5/5 /I t/i /1 5/5 1/5 1/ 5/

S- /S 5/I 5/ 5/5 5/1 1/5 U/ 11 / 5/5 5/
5/I /I /I /I 5/I 5/I I/5 /I 1/5 5/ /

ii COR REL EFF INT USA MNT TES F'L.X FRI" REU lOi'

3-14

AkA~~~... IIU&*Adi AN "



These results substantiate the hypothesis that quality concerns relate to the

life cycle phase through which the system is passing and the application

environment in which the system resides. These conclusions support the frame-

work that has been developed on'two counts:

1. Since different applications have different quality needs, a

framework is needed in which those needs or goals can be identified,

the interrelationships between quality goals recognized, and the

progress toward achieving those goals monitored.

2. Since the perspective of quality needs changes over the life cycle

of a system, a necessary attribute of the quality framework is

a life cycle view of quality. This attribute forces consideration

of long range quality goals as well as shorter range goals at

the beginning of the systems life.

I1

I 3-15



3.3 APPLICABILITY OF CRITERIA IN OTHER ENVIRONMENTS

The establishment of criteria for software quality factors had a fourfold

purpose - to further define each factor, to describe relationships between
each factor, to establish a unique correspondence between metrics and

criteria, and finally to preserve the hierarchical framework of the factors.
In determining whether the criteria previously established are applicable

in new environments particularly in the MIS environment, it is necessary

to shuw that the refined definitions of factors using criteria, the relation-

ships between factors, and the correspondence between metrics and criteria
are preserved by our hypothesized analogy between models of software quality.

Criteria are software attributes or characteristics which contribute to

software quality factors. Whereas quality factors are management-oriented

views of software, criteria are software-oriented. To show that the same

criteria hold in non-C 2 environments, it must be shown that the same

software attributes are present in other environments and that they still

contribute to the same quality factors.

In order to show that each software attribute was present in other environ-

ments, each criterion was analyzed to determine if it could be shown to

exist in software in other environments. But since these criteria are

very general, system-level attributes of software, it was seen immediately
2that non-C software must also share these characteristics. Like factors,

criteria are "about" software, and grouping them in order to preserve a
specific quality factors definition is natural.

To determine if the same relationships between the defining criteria and

the factors held, an analysis of figure 1.3-3 was conducted. Again the
results indicated that these relationships were preserved in other environ-

ments.

3-16

L .At,



The analysis of the correspondence between metrics and criteria is des-

cribed in Section 3.4. The results of this analysis indicated that except
2for a few very minor points, the same set of metrics held in the non-C

MIS environment.

3.4 REVIEW OF THE METRICS

The result of our review of the quality metrics are in Appendix B. Some

examples of the analysis performed and the rationale for modifying,

deleting, or adding metrics are given in the paragraphs that follow. The

examples are grouped logically. Paragraph 3.4.2 has examples of metrics

which apply directly to the COBOL/MIS environment. Paragraph 3.4.2 has

examples of metrics which, because they are not applicable to the new

environment, were deleted. They may also have been deleted because they

were found to be too hard to practically measure. They were only deleted

if modification was not possible. Paragraph 3.4.4 has examples of metrics
which were modified. The modifications in many cases represented wording

changes to make what was being measured clearer or in some cases, to make

the metric a relative quantity metric rather than a checklist type metric.

These changes were based primarily on the additional experience gained using

and applying the metrics during this study. The other reason modifications

were made were to make the metric applicable to COBOL if it was not

previously.

Paragraph 3.4.5 has examples of additional metrics which were considered

during this effort. The validation procedure will reveal their correlation

or value and consideration of retaining them was based on that.

3.4.1 QUALITY METRICS IN DIFFERENT ENVIRONMENTS
Measurements of quality, unlike fundamental measurements such as length,

mass and heat; i.e., extensive properties of things, are ordinal and rela-

tive in nature. There are, however, other types of measurements, less

rigorous, bxt nonetheless useful. A sphygmomanometer does not measure

a fundamental, extensive property of human beings, but blood pressure is

3-17

V-' -.. - - -"w . ... .i ". . . ..-2-' . . .



an important indicator of general health. Measurements such as these are

called pointer measurements. In a certain sense, the "mechanism or pro-

cedure is made to supercede the intuition, and is used to define the pro-

perty which it purports to measure" [STAR73].

Software Quality Metrics are pointer measurements. They do not purport to

measure fundamental properties of software, but instead, characteristics

which provide indication of the quality of the software, The past history of

engineering reflects similar considerations. The desire for uniform quality

is based on practical economic reasoning linked with the need for rationalized

processes in mass production. Thus, uniform quality is based on a tower whose

top level is its goal of quality, the lower levels being standardization of

components, measurement of those components, definition of proper units of

measurement, and whose foundations are fundamental concepts [NOBD77].

The metrics developed during previous research consist of phased sets of

measurements and evaluations undertaken during the development phase of the

life cycle. These are applicable during the requirements analysis, design

and implementation phases of the life cycle. During the requirements analy-

sis phase, 25 elements of measurement are gathered; during the design phase,

108 elements are gathered; during the implementation phase, 157 are gathered

[McCJ77]. The elements of measurement are specific characteristics that are

measured. A number of elements may comprise a metric. While the number of

elements to be gathered may seem excessive, they do serve to give a very

complete profile of the project. Part of the continuing research in the

area of software quality engineering has been to develop prototype automated

tools for the gathering of these measurements, and automated methods for their

analysis [LOPC78]. The automated tools alleviate the high cost of manual

application of the metrics and assist in the accurate, consistent application

of the metrics.

Because of the fact that all of the different applications (MIS, C2 , and Sup-

port Software) are developed in basically the same phased approach, i.e.,

requirements analysis, design, implementation, and test, the phase or pro-

gressive application concept of the metrics is relevant to all of them.

3-17a



The technique or automated tool used to take the measurements, however, will

differ depending on what the documentation requirements and formats are and

what programing language is used. The measurement applied during the require-

ments analysis and design phases are independent of the language since they

are oriented toward the documentation rather than the language. Some

j metrics relating to design measures could be influenced by the particular

implementation language. This possibility was checked for in our evaluation.

The metrics applied during implementation were the most likely to be lan-

guage dependent. Emphasis during our evaluation was placed in this area.

The major concentration then was in evaluating the applicability of the

metrics to MIS design and COBOL programming practices.

It is important to note a difference between a metric being inapplicable

to COBOL, in which case it is not a generally applicable metric and is

either deleted or modified, and a metric not applicable for a

particular situation. An example of the latter case is the metric,

RECOVERY FROM DEVICE ERRORS (ET.5). If the operating system provides

facilities with this capability, perhaps with a checkpoint/restart capa-

bility, and the system does not have a critical timeline in which to func-

tion, then this metric is unimportant or not applicable to this situation.

This does not mean it has no meaning in an MIS environment. It can be

applied and does have meaning in certain circumstances.

3.4.2 EXAMPLES OF METRICS APPLICABLE TO COBOL

Over 90% of the metrics established in the previous research effort were

determined to be applicable to the COBOL/MIS environment. Table B-1,

Appendix B, is a table of metrics organized by life cycle phase and rela-

tionship to criteria and subcriteria. The organization of this table is

based on the recognition that the main source of error in system develop-

ment is translation from one phase to another, Thus, the three main

development phases are indicated, as well as the criterion/subcriterion

applicable to a factor. The elements of measurement occur in the center

under the heading "METRIC."

One of the criteria of the factor reliability is accuracy, There are five

3-18

I -'i



measurement elements associated with this criterion. These are reproduced

in Table 3.4.2-1 which is excepted from Appendix B.

Table 3.4.2-1 Accuracy Metric

FACTOR(S): RELIABILITY

RE NTS OI1GN IIULEIENTATION
SUCRITERION MEiC YES/NO VALUE Y VALUE (ES/NO VALUE

I OR 0 1 OR 0 1 OR I

ACCURACY AC. 1 ACCURACY CHECIXIST:
(1) Error analysis performed and budgeted to ED

module.

(2) A definitive statement of requirement for ED
accuracy of inputs, outputs, processing,and constants.

(3) Sufficiency of math library.

(4) Sufficiency of numerical methods.

(5) Execution outputs within tolerances.

SYSTEM Score tota from applicable elements F1 E1 F"
METRIC VALUE: I applicable elements

Thble 3.4.2-2 illustrates the analysis performed to assess how applicable

this metric is in the MIS/COBOL environment.

Initially, it was thought the metrics oriented toward accuracy would not be

as applicable to MIS systems as C2 systems. 'However, when consideration is

given to the possible impacts of inaccuracies in a financial accounting sys-

tem or a critical item inventory system, the importance of those measurements

are quickly recognized.

AC.I (1) and (2) simply are checking in a requirements document for recogni-

tion of accuracy requirements. Without a stated requirement, the likelihood

of the provision of the required accuracy is less.

AC.I (3) is insuring that consideration for accuracy requirements are not

only applied to software being developed but also to "off-the-shelf" soft-

ware or mathematical routines provided in the form of a library of routines

by a vendor. Another situation, probably more typical of MIS development

organizations, are libraries of routines developed in-house for typical

calculatory functions. For example, a large insurance firm may use a library

3-19

V.i

,. | .. . . .. .. . .



Table 3.4.2-2 Accuracy Metric Analysis

ELEMENT PHASE INTERPRETATION

AC.l (1) REQMTS By "error analysis", we
Error analysis performed mean the amount of error
and budgeted to module. which the user is willing

to tolerate in the per-
formance of a particular
function. ly may or may
not be possible to budget
this to a specific module
at this early stage. The
main objective is to
analyze the error which
is tolerable in the
f'ncti on.

AC.l (2) REQMTS Subsidiary to the error
A definitive statement analysis, and concurrent
of requirement for to it, the developer and
accuracy of inputs, user should agree on the
outputs, processing, amount of accuracy they
and constants. wish in the inputs, out-

puts, processing (which
error analysis should
uncover), and constants.

AC.l (3) DESIGN Often routines provided
Sufficiency of math in a math library are
library used. These library

functions should be
checked during design
for compliance with
accuracy requirements.

AC.l (4) DESIGN Having performed the
Sufficiency of numerical error analysis in AC.
methods. IMPL (1) and AC.I (2) it is

necessary during design
and implementation to
satisfy those needs.

AC.l (5) IMPL During debugging and
Execution outpus within testing in implementa-

tion it should be noted
whether the analysis-
set tolerances are
satisfied by the outputs.

3-20

aid&



II . . wp

of "earning" routines to calculate the complicated question of how t, -h of

a policy has been "earned" over periods of time. For each new applica4 ion,

the accuracy of these routines should be checked for compliance with overall

requirements. Calculation of inventory reorder points or budgetary balance

also fall into this category.

AC.l (4) is the check that the design and implementation of the algorithm

satisfies the requirements. Situations to emphasize in this area might

be round-off errors, number of significaut digits, reorder point calculations,

etc.

AC.l (5) is a check that during debug and unit test, outputs are checked for

compliance with accuracy tolerances. Here report formats as well as calcu-

lations can influence the accuracy of the outputs.Ii
Thus each element of measurement within the accuracy metric has signifi-

cance and is applicable to an MIS environment.

As a more specific example of how the metrics apply to COBOL, one of the

measurement elements (element (5) in table 3.4.2-3) of the Code Simplicity

Metric (SI.4) is a check that the module is not self-modifying. In a

COBOL program, this check would be for the use of an ALTER Statement.

Table 3.4.2-3 Code Simplicity Metric

CODE SIMPLICITY SI. 4 MEASURE OF CODING SIMPLICITY (by module)

(1) Module flow top to bottom. IZ
(2) Negative Boolean or complicated compound -]

Boolean expressions used.~(I - ! 2! above

- eiutibe statements)

(3) Jumps In and out of loops E:3
( single entr/Sin1e exit loops)to0 w oops ]

(4) Loop index modified ElD
oal Ilos ".(1 10%o ndicesamodfiedb

(5) Module Is not self.modifying. 1 -3

(6) All arguments passed to a module are
parametric.

(7) Number of statement labels. ED
I labels

S"F executable ftatemnt. I

(8) Unique names for variables.

(9) Single use of variables, ID

3-21

- .1 |



The following example illustrates the ALTER construct in COBOL, and its use in

modifying the pvocessing in a module. A similar example is given in (YOUE72].

A COBOL Program with ALTER Statements

READ-INPUT. READ INPUT-CARDS.
IF TRAN-CODE=O THEN ALTER ERROR-SWITCH TO

PROCEED TO TOTALS-PARA.

ELSE IF TRAN-CODE=I THEN ALTER ERROR-SWITCH TO
PROCEED TO FINAL-PARA.

ELSE ALTER ERROR-SWITCH TO PROCEED TO ERROR-PARA.

ERROR-SWITCH. GO TO ERROR-PARA.

ERROR-PARA.

MOVE TRAN-CODE TO ERROR-TYPE.

MOVE QUANTITY TO ERROR-AMOUNT.

MOVE DOLLAR TO ERROR-DOLLARS.

WRITE ERROR-FILE.

GO TO READ-INPUT.

TOTALS-PARA.

COMPUTE TOTAL-QUANT=TOTAL-QUANT+QUANTITY.

COMPUTE TOTAL-DOLLARS+TOTAL-DOLLARS+DOLLARS.

MOVE TRAN-CODE TO ORDER-TYPE.

MOVE DOLLAR TO ORDER-DOLLARS.

MOVE QUANTITY TO ORDER-AMOUNT.

WRITE ORDER-FILE.

GO TO READ-INPUT.

This practice introduces difficulty from both a static sense and a dynamic

sense. The module is difficult to understand (static) ard debugging is
very difficult since the state (dynamic) of the module when an error occurs

is uncertain

3-22



Another example is the Effectiveness of Commnents Measure (SD.2) shown par-

tially in table 3.4.2-4

Table 3.4.2-4 Effectiveness of Commnents Measure

EFFECTIVENESS OF SO. 2 EFFECTIVENESS OF COMMIENTS MEASURE
COMMIENTS (1) Modules have Stanidard fovuated Prologue

cimefits which describe:
*Module name/version number
-Author

*Date
-Purpose

-Inputs

-Outputs

-Function

-Assumpt ions
*Limitations and restrictions
-Accuracy requirements
-Error recovery Procedures
-References

1- 0modules Iiolate rule
T modules

(2) Comments set off from code in uniform manner
I- todles v4olat rule

(3) All transfers of control & destinations
commented

tta I mod' Q ule
(4) All machine dependent code commented 1

I-. I modules'T Vol ate rule
tota . mdules

All of these measurements are important in COBOL. The first element, prologue
comments, can be accomodated by the Identification Division and a REMARKS sec-
tion. The Remarks Section should be set off as a commnent, though, since it
is no longer in the ANSI Standard.

3-23

I...



Exampl e:

IDENTIFICATION DIVISION.

PROGRAM - ID. SAMPLE 1.

AUTHOR. JIM PROGRAMMER.

INSTALLATION. COMPUTER CENTER.

DATE - WRITTEN. SEPTEMBER 17, 1978.

DATE - COMPILED. SEPTEMBER 17, 1978.

SECURITY. UNCLASSIFIED.
• REMARKS.

• MODULE NAME/VERSION - SAMPLE I/VERSION 2 INCLUDES MODIFICA-

• TIONS OF 19 MAY 77, 22 JUN 77, 15 AUG 77, 7 DEC 77,

• 1 MAY 78, 17 SEP 78.

* PURPOSE - TO PROVIDE A SAMPLE IDENTIFICATION DIVISION FOR

* A COBOL PROGRAM WHICH COMPLIES WITH METRIC SD.2(1).

• NOTE THAT THE IDENTIFICATION DIVISION, AND COBOL

• DIVISION/SECTION STRUCTURE PROVIDE MUCH OF THE

• REQUIRED INFORMATION.

• THE ALIGNMENT SHOULD BE SUCH AS TO PROVIDE EASY

• SCANNING.

• INPUTS/OUTPUTS - PROVIDED IN THE INPUTS-OUTPUTS SECTION

• BELOW.

* ASSUMPTIONS - NONE.

* LIMITATIONS - NONE.

• ACCURACY REQUIREMENTS - NONE.

* ERROR RECOVERY PROCEDURES - SHOULD BE DOCUMENTED AND

* REFERENCED HERE.

• REFERENCES - DOCUMENTATION TITLES SHOULD BE REFERENCED

• HERE.

3-24

S4 l



3.4.3 DELETED METRICS

Deletion of individual metrics was based on 3 criteria:

1. Difficulty in gathering actual measurements.

2. Inapplicability to either the COBOL language or to the MIS

environment, so the metric is not generally applicable.

3. Redundancy.

We show some examples of deleted metrics below. A complete list of met-

rics may be found in Appendix B.

Example:

SI.l Design Structure Measure:

(2) No duplicate functions

SI.1(2) has been deleted because in actual practice an analysis of

the purpose of a function is too time-consuming and arduous a task

to justify. In any case SI.1(1), SI.1(3), and SI.l(4) should

adequately compensate for its elimination.

Example:

SI.1 Design Structure Measure:

(7) No gl.obal data

This measure has been deleted for two reasons. The first relates

to the fact that COBOL is not a block structured language, and thus

variables local to a block cannot be implemented. The second is the

fact that most MIS applications are data-driven and the passing of

common data from one process to another is not only necessary, but

positive.

3-25

V ,r

-TA., 's> * i



Example:

SE.A Storage Efficiency Measure:

(3) Common data defined only once

This measure has been deleted since it is redundant with SE.(ll)

below:

(11) Free of redundant data elements

I- # redundant data elements
# data elements

We believe that SE.l(ll) is the more effective measure of data

conciseness.

3.4.4 MODIFIED METRICS

Certain metrics have been modified to make them more applicable to the

COBOL environment.

Example:

Descriptiveness of Implementation Language:

(5) One statement per line

# continuation + multiple
statement lines

1- total # lines

Since COBOL is a free-form language and sentences may be sizable

and still perform a useful strtcturing function it was decided that

a statement should be interpreted in COBOL as a verb clause. Thus

no penalty is assessed for a situation like the following:

3-26

-

Irs. .l. I.' ;



Example:

IF IP-TRAN-CODE NOT EQUAL '0'
OR IP-TRAN-DATE EQUALS '0178'
MOVE ZEROS TO OP-TRAN-TYPE
MOVE IP-TRAN-DATE TO OP-DATE.

Thus when applying this measure to COBOL it will be interpreted as

fo11 ows:

(5) One verb clause per line

# lines having more than one
1- verb clause

total # lines

Example:

MO.2 Modular Implementation Measure:

(2) All modules do not exceed standard module size (100)

# modules > 100
I- total modules

The intent of this measure was to identify the

number of modules which exceed the structured

programming guideline for module length.

The relative difficulty which a programmer has in implementing sub-

programs in COBOL makes it hard to adhere to this rule since data must

be passed in the same precision and length as in the calling routines.

Instead, following YOURDON [YOUE76], we define a micromodule to be a

named paragraph. In COBOL this measurement can be interpreted as para-

graphs should not exceed 50 lines or one page of output.

9 The measurement has been changed to

Module Size Profile

The module length should be recorded and the length of

micromodules should also be recorded in the case of a

COBOL program. 3-273-A
.r5r 4"



Another area where our metrics deal with an important issue or charac-

teristic but further emphasis, clarity, or sophistication is felt to be

necessary is that of data bases. Two measurements, EE.3(l), data grouped

for efficient processing, and EE.3(5), data indexed or referenced for

efficient processing, represent a static and dynamic view of the data

base area. The application of these metrics may be very difficult de-

pending on the complexity of the system and the size of the data base

itself. The additional measurements added in this area include (in EE.3):

* Size of data base

e Segmentation or compartimentalization of data base

e % of static elements (referenced but not modified) in data base

@ % of dynamic elements (modified) in data base

A recent publication by McClure [McCC78] provides concepts of well-structured

COBOL programs. To illustrate the consistency of our metrics with her

concepts, Table 3.4.5-1 relates existing measures with six properties identi-

fied in [McCC78] as required by a well-structured program:

Table 3.4.5-1 Structured Concepts Related to Metrics

PROPERTY RELATED METRIC

Property 1: The program is partitioned MO.2(l)
into a set of hierarchically
ordered modules.

Property 2: The program controls structure SI.1(1) +
follows a simple, hierarchical MO.2(3) - (7)
scheme.

Property 3: Module construction is stnad- SD.3(2)
ardized.

Property 4: The use of program variables SD.2(6)

in the program is made
explicit.

Property 5: Error processing follows normal ET.1(2) - (3)
control flow.

Property 6: Well structured documentation SD.2
is required in the program

3-28 code.

9.'



3.5 ARMY MIS AND AIR FORCE SOFTWARE DOCUMENTATION REQUIREMENTS SOURCES
This section defines the sources of software documentation requirements

for Army Management Information Systems (MIS) and Air Force software

applications.

Army MIS documentation requirements are contained in USACSCM 18-1

While the Air Force requirements come from MIL-STD-490 and DoD

4120-1 7M.

In defining the sources of documentation requirements ke developed the

following outline of generic software project phases:

* System Requirements Definition

e Functional Design

* Detailed Design

e Implementation

* Formal Testing and Verification

* Software Maintenance

* Operations

3.5.1 SYSTEM REQUIREMENTS DEFINITION

The system requirements document is the top level document in a system.

The design of the entire system is based on requirements identified in

this specification. The Army's MIS system requirements are documented

in Volume I, Executive Summary, as required by USACSCM 18-1. For Air

Force applications, the system requirements are contained in the Type A -

System Specification which is required by MIL-STD-490.

3.5.2 FUNCTIONAL DESIGN

Functional design is the process of defining what software functions a

system will perform, but does not address how they will be performed.

For an Army MIS, functional design is documented in the General Functional

Design Requirements (GFSR) and the Detailed Functional Design Requirements

32| 3-29

... ....



(DFSR) which are part of Volume IV, Reference Material as defined in

LSACSCM 18-1. The Air Force follows the requirements in MIL-STD-490

for Type B5-Computer Program Development Specification. The B5 document

is sometimes referred to as the Part I Specification.

3.5.3 DETAILED DESIGN

The detailed design is developed from the functional design and describes

how each software functional will be performed. The detailed design for

an Army MIS is contained in two volumes as described in USACSCM 18-1;

Volume V, General System Analysis Documentation and Volume IV, System

Program Documentation.

Detailed design documentation for the Air Force is contained in the Type

C5 - Computer Program Product Specification as required by MIL-STD-490.

The Type C5 document is sometimes referred to as the Part II specification.

3.5.4 FORMAL TESTING AND VERIFICATION

The Army requires some test planning documentation in the GFSR which is

part of Volume IV, Reference Material, however, some classes of programs

do not require formal test documentation. Chapter 5 of USACSCM 18-1

contains requirements for the documentation of test planning, test con-

ducting, and reporting.

Air Force guidelines for documentation of the Test and Implementation

Plan and the Test Analysis Report are contained in DoD 4120.17M.

3.5.5 SOFTWARE MAINTENANCE

Software maintenance includes software error correction and modifying,

adding, or removing software functions.

USACSCM 18-1, Chapter 9, ADP System Maintenance defines documentation

for software maintenance for an Army MIS. DoD 4120.17M describes the

requirements for a Program Maintenance Manual.

3-30

-

L 4.

-All



3.5.6 OPERATIONS

Operations includes those functions required by an operation or system

user to exercise the software system. USACSCM 18-1, Volume III, Opera-

tions and Maintenance, contains the documentation defining system opera-

tions for an Army MIS. Operations for the Air Force are documented in

the Computer Operations Manual as defined by DoD 4120.17M. Volume II,

User Documentation as defined in USACSCM 18-1 contains user information

for an Army MIS. DoD 4120.17M defines the User Manual for Air Force

Systems.

3.5.7 COMPARISON
A comparison between documentation requirements was planned in an initial

report plan. At first, the comparison was to be between Army require-

ments and Air Force requirements. To be of more general use, it was then

felt that a more meaningful comparison would be between MIS documentation

requirements and C2 documentation requirements. Neither comparison has

been documented for the following reasons:

* A single comparison using only the documentation specifications

(the Military Standards and CSCM 18-1) would be ambiguous since

it is the interpretation and enforcement of those specifications

that are important.

* A single comparison using our C2 environment and the MARDIS

environment could not be generalized and would be misleading

as representative of a comparison of all AF/Army systems or

of all C2/MIS environments.

* The quality (including completeness and consistency) of the

documentation is what is important. Different applications

require different levels of detail in their documentation.

However, certain key information should exist. The metrics

which are applied to documentation are oriented toward asses-

sing the quality and the existence of the key information.

3-31

,, 4.

.. '. ~~.,r.. .4



To provide some general observations about current documentation require-

ments relative to the general application categories of C 2 , MIS, and

support software, the following points are made:

0 C2 environments have the most formal, voluminous, detailed

documentation requirements. These systems are almost always

developed in a government acquisition manager-development

contractor environment where formal contractual requirements

are levied on the developer for deliverable documentation. The

requirements are usually a rigorous application of military

standards with additional local requirements also imposed. In

some cases, detailed outlines of what information should be pro-

vided in each document are given. The documents are milestone

driven and often delivered more than once in draft, final, and

updated forms.

e MIS environments have less volume and detail in documentation

than C2. The systems are more typically in-house development

efforts. The USACSC, for example, is the central developer of

multicommand MIS for the Army. The documentation requirements

are more like formal in-house standards. The user/customer is

less likely to require additional documentation other than the

normal standards. The reviews and timing requirements of the

documents are less strict.I Support software, unless developed for commercial marketing,

usually has only very informal documentation. At best the

documentation requirements may follow some informal in-house

development standards. Many support software tools are devel-

oped without a wide user population in mind or with little user

interaction early in the development process. Often, a software

tool will be developed as a prototype and then evaluated by

users after completion of the initial development.

3-32

S . . . . - - m li ""



Appendix A provides additional information on the USACSC documents

typically produced during an MIS software development. Appendix B,

RADC TR-77-369, provides a description of the documents typically

produced for an Air Force C2 software development.

33

• 3-33

" V '"mmmmmwmwd m. ,,mrm mmmm Im mm'm m



SECTION 4

APPLICATION AND VALIDATION OF METRICS

4.1 APPLICATION APPROACH

The metrics established in RADC TR-77-369 were applied under this contract
to two systems described in the subsequent paragraphs. The operational

and maintenance histories of the two systems were then used to determine

the validity of the metrics as indicators of software quality. The

application and validation are described in this section.

4.1.1 MARDIS OVERVIEW

The Modernized Army Research and Development Information System (MARDIS) is

a vertical management information system. MARDIS supnorts the program form-

ulation, phase schedule, and budget apportionment processes in R&D through

the processing of resource, performance, and milestone data.

MARDIS assists the R&D community by providing timely, accurate,and consistent

management information dealing with the Army's ROTE program. The source of
most of the data in MARDIS originates from the laboratory scientist, techni-
cian, or engineer engaged in research and development. The information includes

performance, schedule, and resource data. The system takes information once

included in 21 separate R&D reports and consolidates it into a single report,

thereby eliminating redundancy and insuring data consistency.

MARDIS DOCUMENTATION DATA BASE

The following documents are being used to evaluate the MARDIS software sytem:

# Source Code Listings

# General Functional Specification Requirements

* Detailed Functional Specification Requirements

* Project Master Plan

e System Documentation (Volumes I through VI)

# Software Change Requests

@ REMARCS Manpower Data

* MARDIS Conversion Plan/Report

4-1



The MARDIS system has 28 COBOL programs, consisting of approximately 54,000

lines of code. Because of the unique requirement for high portability which

the U.S. Army Computer Systems Command must satisfy in each of its delivered

systems, a special preprocessor is used to accomodate the COBOL dialects

implemented on the IBM, CDC and UNIVAC computers used at various Army instal-

lations.
p

4.1.2 ISDS OVERVIEW

The Integrated Software Development System (ISDS) is an evolving collection

of software tools and aids which has been developed under an independent re-

search and development project at GE. ISDS consists of several subsystems

which support the various personnel and processes involved in the software

developments. The subsystems are:

. Computerized Interactive Charting System (CINCH)

- Assists in interactive development of graphic design material.

e Chart Analysis Subsystem

- Performs various analyses on design material such as standards

enforcement, path flow analysis and complexity measure calculation.

e Program Design Language Processor/Analysis Subsystem

- Accepts, formats, and analyses a program design language. An-

alyses include calculation of a complexity measure and creation

of a hierarchy chart.

* Programming Language Processors/Parser Subsystem

- Includes structured language preprocessor and generalized parser.

Currently parses FORTRAN, JOVIAL, and PASCAL.

The ISDS project is directed at developing practical methods for improving

the software development process throughout all phases of development from

requirements analysis to maintenance. In particular, it is concerned with

tools which aid in reducing problems associated with the high cost of soft-

ware development, satisfying customer requirements, meeting contract shedules,

and generating adequate documentation.

4-2

r



ISDS DOCUMENTATION DATA BASE

The following documents where used to evaluate ISDS:

Software Development and Implementation Aids IR&D Project Final Report
for 1974, GE TIS 75CIS01, P. Richards and P.Chang, July 1975.

Software Development and Implementation Aids IR&D Project Final Report
for 1975, GE TIS 76CIS01, P. Richards and P. Chang, January 1976.

Locialization of Variables: A Measure of Program Complexity, GE TIS
76CIS07, P. Richards and P. Chang, December 1976.
Enhancements to the Integrated Software Development System (GE/ISDS),
GE TIS 76CIS04, C. Lopez de Nava and W. Neff, December 1976.

Developing Design Aids for an Integrated Software Development System,
Proceeding of 1977 Computers in Aerospace Conference, P. Richards,
December 1977.

"The Integrated Software Development System - ISDS Users Manual for

RSC-11D and RSX-llM", GE Working Paper, de Nava, C., September 1978.

"Computerized Interactive Charting System - Program Specifications",
GE Working Paper WP76SELO3, de Nava, C., October 1976.

These documents, except for the last two, are technical reports describing

IR&D efforts. Contained within each report is a statement of a problem to

be solved or a requirement for an additional capability (tool) for the

GE/ISDS, a statement of the design approach, and the results of the project.

Each document therefore contains the progressive information usually pro-

vided during a large scale development effort. They will be utilized in

that manner for application of the metrics. The last two documents are

more typical of documents found in normal system developments, a users

manual and a program specification document.

4.1.3 APPLICATION OF THE METRICS

The format with which the metrics are presented in Appendix B is conducive

to illustrating their relationship with respect to the criteria and fac-

tors and their progressive application during the phases of development.

It is not conducive to actually applying the metrics, i.e., taking the

4-3

LL IA-&, A- I ' 1



measurements from the product available during development. The purpose

of the second volume of this report, the Software Quality Measurement

Manual, is to describe the procedures for applying the metrics during a

development. The tool which was developed to facilitate application of

the metrics in a formal manner are worksheets, The worksheets are des-

cribed in the second volume of this report. A sample is shown in Figure

4.1.3-1. The worksheets facilitate the manual collection of the raw data

used to calculate the metrics. They are organized by phase, by system

or module level measutements, and to provide a systematic, organized view

of the product being inspected.

To demonstrate the thoroughness or coverage provided by the worksheets,

Figure 4.1.3-2 contains a very simple example of the elements of a module
that were examined or counted using the source code worksheet (Metric

Worksheet 3). The individual elements are underlined if a question or

count on the worksheet caused the inspector to look at the particular

element. Note the completeness of the coverage. These worksheets are

oriented toward the manual applications of the measurements. If tools

exist in a particular environment which allows some of the metrics to be

taken automatically then the worksheets can simply serve as a bookkeeping

form for those particular measurements.

The worksheets presented in the manual represent the final form derived

during this study. A preliminary form was used to take the measurements

from the ISDS and MARDIS products.

4-4

r*



?C,). driest
-9.tc- WO, t .1 S to

go $,octiao

"ant, 
wk

Via

tea xMIC ARI(SHCET 24 SYSTEM *ATE:

.AUN 'eots &S&f* ESIGIVSVSM LVEL UK:_ IMSPEMP.

%04 fit
.0 V ETEXIESS (CORRECNESS. AEL:ASILITY1
'rese $at& l,

1. ts nore a racrix relating itemized r"u1mom ts qodules anitit iffelewt;u
4. M Aced tmsf requiriments,

0. OW imany Ujor func ions 1,
400 few,

1*0 1 -)rq 11140

f"o, 
C'OR;

!kS
4A;

t 'Apt;
10OULI. - -1) . slop

SaUpCE cOZE1 AA lumber anal trooes Camoutatio"al
Conitl

IE umper , .0i t.01"I tra Enoutioucaut
lz tea ;a

-onts of -044 (COOCU - pcon", Uta "R41 i.,q
5*91L, OS/Systam iucoort

umer (roTa. '- - , W14 ILI -
f locos out of Configuration

'Au'Ger "nquokqe sui-ef I it" 31JOIDS utine/Routint

# "nine e Of -,coos tT%&t kfa Interif

t"moots S kq*VA ",a t I Sol*4wedef of 1 *00 - stm
ar l.rfor" Aterface

V do'UND'r niou a 16. 4 64 '"StrIC.-S VL71'4- rdtassinq
,at& ma mad f -" . oft r interface

%woer t .Iciels "cule ,2011 of qr .1 Ificat, st@d 34*4 !"terface
,Sfit$ OW attmAts, V5ist , AL- SOACIve

mAt ' o 'Ou"a SA) ;Slons
,Iuopar At 0 or 31 A eorq rig*%

at ZIU 'At 1. Glean ko
(SO f intrantos (A I anquaO &%4 Uta
xU004? I - "dp modu * c " A. S-ruc-u rers earlable

f aglts am ,&- t, Altion
k-641. .9. a adz SM,

eao '40 *- cfiklq ryt errors
'est4.f%9 Ia. I'S , Y.WAd 'rar,

tint
V uc Tatlaft

f t
Auptr liancs

SES , - :KtkT 
f Ia rands

3.
U"ar of 101(lue

oy% 
a'. Sta,

399r"t 
A ewts

&cars
'IC-St cars

'tufflef 0 ire tea! 04.

'Jir I'l 000
socM. Otiales ,1'%SEL -1 -,Wts lowts,

, 3f I 
letI, red 44

na o'"Ats 40" lulfty C
-4 if i nos . A .y

119"r of at

.jumer I f -iofl.o, rom 1 (10 1 'T"W i CS

Comolts no*' , ical 3r A
,rd i 04US 'bout Irt .1"i gals f ,t Iny'S

-Jl*- . '.0drifto- lumber q. ive 0 " trity

nAnq Aor, '41's, "Otia"S lescrof I
Onts, sur S. for"011, , -.10 Ik

uC. of% - qut3ut 
restot. CS f%

late iotkv ons - rob .,PpaA to 0. Abuts , I no, a, 11 - fit, to
t Ale A tile -.1ia Qo*1*9091, ,Wt rteat'aul a tonq i led 'ould ocy-a

;at teffil -- iis f1ps. laq iklly -4 A

'atlsfied 31 " and -064k
,3 , ,,tints Wanted - S tile I

,CIS- re not C i'dot-d!01 1
If -oflt "do ca- lum" I -,jASS it,% "re

-
r a

'no 
'tstowt- On no$ &A 4-5

f tw.,Auat
i 3. 'Wmef 1

Figure 4.1*3,1 
Metric Work5heetS



$!

SUOROUTINE TABSCII(NSYDI.NFLAG)

6 C SEARCH THRU DATA BLOCK NPT FOi THE LEMNTNIL.
7 C_-OF THE SYMO

11 tAXSY , 21 _
12 k.
13 DO 201 ,L - LAXSM14 j:
Is tf (NpT_[j q.Lp. P.). L M
16 IF N.SY14. .IpTlJ T .-
17 C
Is - J.- '..t*NPT (J d*- i)t4.

210 C

21 00 It I
22 MmLA !* I
23 j_ XIyM
24 f
25 M CONTINUE
26
27 I RETURN
28 END

Figure 4,1,3-2 Worksheet Coverage

4-6



4.2 VALIDATION APPROACH

The validation approach was basically the approach described in RADC-TR-

77-369 and in paragraph 1.3 of this report. This approach was augmented

with some additional analyses made possible by the historical data avail-

able. These analyses and some assumptions that were necessarily made due

to the historical data available will be described in the subsequent

paragraphs.

4.2.1 MARDIS HISTORICAL DATA

The historical data provided about the MARDIS system development and

operation consisted of (1) a Final Report documented after the effort to

make the system compatible with the three computer evnironments, (2) Sys-

tem Change Requests (SCRs), and (3) a resource accounting (REMARCS)

system listing.

Seventy-six (76) SCRs were provided. An example is in Figure 4.2.1-1.

Typically an SCR is documented when a problem or enhancement has been

identified. The problem is identified, a solution recommended, and a

priority assigned for completion of the necessary modification. The

resource accounting system maintains person hour expenditures against

the SCRs. Over 50 man years of effort were recorded on the REMARCS

listings provided.

Our initial intention was to use this data to provide the quality rating

for MARDIS. However, because (1) we found little overlap between the

SCR's and the REMARCS data, (2) the SCR's were not very explanatory, and

(3) only 2 SCRs seem to cover the entire conversion effort, these data

sources were only used as a gross indication of the effort and as insight

into the problems that were encountered. Instead, we utilized the number

of changes that were made to the source code and the problems identified

in the final report as more detailed indicators of the portability of the

system. The changes were identified by the multi-line entries in the

source code relating to the different computer environments. Our

4-7



SYSTEM*S CHKr,:G= EQUEST (SC7-

1. TO: 2. F FO :.' : 3. 0OPI r- ;.A T oR S% J:
CDR, USACSC CDR, USACSC Rll-AI50-213
ATTN: CSCS-OA ATTN: CSCS-FSS-C 4. PON 1 CC.':TACT.
Ft. Belvoir, VA Ft. Belvoir, VA L. Whitt, 756-5350

S. CJTC-):y(!-7 6. SUBSYSTEM 7. INJDZ'T ENC0UNT EEED

cEMoEnGENCY 21nouT.ViE PROGRA.M. 10 ALL- STATION __________

E3 URGEN4T [-]P R IRTY VERSION NO DATE ______TIMEj 8. SHORT TITLE.I C'iA.RACT~ilS *AXII 'UM,.* INCLUD!;4 SP.CESI.
MULTI-ADPE CONVERSION 9 OL.iTTO OViCTO

A. DPI US3 M.A.JUALS (2 new) C. EXECUTIVE SC~7AflE F

B. FUNCTIO.JAL US ER f.ANJUALS D . FUNCT1O.NAL SOF'.-:ARE

10. ATTACHIMENTS

A. MAPS D. FILE PRINjTOUTS C3 . OUTPUT LIST3

a . CORE cu;.*.PS E. CON~SOLE SHEETS E1 K. JOB STREAM.iSEO.
i-i MULTI-AOPE

C. II.OACT STATZ%',EN~T Li F. OFSR Q IL OTHERCONVERS ION PLIAN1

A. PROS LEM D ESCRIPTION: MARDIS must be made-compatible with CDC and UNIVAC ADPE as
well as IBM

B. RECOMW.ENDED SOLUTIONIACTION TAKE,%: Make necessary program, system and documentatio
changes to establis;h MARDIS as a multi-AOPE AMIS, compatibility will be required to
operate on: IBM 360/370 (OS)

CDC 6500/6600 (SCOPE)

UNIVAC 1106/1108 (EXEC 2)
Wor wil b peforme 1AW a ttahed 1lan at the highest work orioritv.

12. CCOPY FURNJISHED 13. PnEPAr~zD :;y.

j DATE: SG1rJR: _________DATE:/a

14. PRCONNT AGENT REVIEVI:

A. TYPE OF CHANGE B. CLASS OF CHANGE C. EXT E NT OF C 14ANG Z

2 FUNCTIONAL REGULATORY' MAJOR

0 EERD ARA FOR ANALYSIS (DATE):MNO
E.DISPOSITION:

APPOVE. RQUETEDINIPLEMENTATION:

F. FUNCTION'ALGU0NE ATTACHED SNOT REQUIRED

C1TOSBE PROVIDED

SIGNED: ~ A.- -DATE:

DA Form 4157-R, Y Feb 76
Figure 4.2.1-1 Example System Change Request

4-8



assumption is that the effort to transport the original system is propor-

tional to the number of changes in the source code, This assumption was made

basically because the data available did not allow more detailed analysis,
Other changes described in the final report but not identified by multi-line

entries were analyzed for impact.

The data available supported formal analysis of portability. Less formal

assessments were made concerning the maintainability of the software.

4.2.2 ISDS HISTORICAL DATA

The ISDS system was developed as a prototype tool in an R&D environment.
As such, a formal software problem reporting system was not in place

during its development. In the past year, ISDS has been transferred to

a number of GE installations. In transfering the system, considerable
effort was made to transition the software from a prototype version to
a production tool. This effort during a four month period was captured

by use of a data collection form. The form was designed to collect the
effort being expended on an ISDS task (a funttionally-related group of
routines) by quality factor. For example, if changes were being made to

enable transportation of a task to a different operating system, the

effort to make those changes was recorded against Portability. If
changes were made to enhance the Maintainability of the software, such

as the addition of standard format prologue comments, use of a structured

language, conforming with naming conventions, etc., then effort was re-

corded against Maintainability. Figure 4.2.2-1 illustrates how we cap-
tured the effort required to transport from the prototype version of
ISDS on a POP 11/40 running under the RSX lid operating system to a
number of other environments. The original source code was maintained

as well as the new version.

The documentation supporting ISDS is also representative of an R&D or
support software environment. The documentation did not represent
formal specifications but were instead technical reports describing

the R&D project. Involved in transitioning ISDS to a production tool

4-9

%4

S, , " , '. . . . . .. .. . .



C1Ln c

______________________________________

I3
C- 0- C.. )

Cl -- to

t-) = =wLnc C

w~- 0D M Ujw lID _j W14u-4 u 0
U- r'. cok.u>< c

U-'- W4.):< CDu 6.

oi m " tn x i

w U-

I--

4-10

V>11)



has been the development of documentation which will support its operation

and maintenance. The documentation was not available during this study.

41

IP
i]

-4



4.3 VALIDATION RESULTS

The validation results are presented at three levels corresponding to the

three levels of quality assessment analysis described in the Software

Quality Measurement Manual (volume II): Inspectors Assessment, Sensitivity

Analysis, and use of normalization function.

4.3.1 INSPECTORS ASSESSMENT

In evaluating the MARDIS and ISDS systems, a qualitative assessment of

the code was made as part of the investigation. The qualitative assess-

ment (review or audit) would normally be part of a quality assurance pro-

gram and is enhanced by use of the worksheets and quantitative measure-

ments. The assessment identifies problem areas which should be addressed

in subsequent phases of the development.

GENERAL OBSERVATIONS OF MARDIS

Two quality factors analyzed in MARDIS were Portability and Maintainability.

PORTABILITY

Portability is a quality factor which is important to the Army Computer

Systems Command because of the operating environment in which it must

exist. This operating environment consists of multiple mainframes and

operating systems, and the attendant incompatibilities inherent in such

an environment. These incompatibilities force an overhead on software

development to create portable systems. In the instance of MARDIS, a

major redesign of the original system was undertaken to make the system

compatible with Honeywell and UNIVAC systems. Had such a requirement

been identified early in the lifecycle, the transition would have re-

quired much less effort.

The portability of a system written in COBOL is still a significant

problem even though government purchased computers used in business

applications generally use approved COBOL compilers.

4-12



The approach used by the MARDIS team was to redesign the code using a

strict ANSI COBOL subset. In the process of developing the new system,

they found that there was 16 compiler implementation anamolies

Table 4.3.1-1 breaks the anamolous cases into 3 categories: I/O, Semantics

of Implementation and Character Set. The I/O category is any situation

where the operating system, which allocates system input and output re-

sources, interacts with the COBOL compiler. Semantics of Implementation

refers to differences in interpreting the language specification for the

compiler. Character Set refers to the available character set of the

particular machine. Eleven of the anamolies are semantic, 4 are I/O and

1 related to character set.

One tends to expect some I/O related problems, given the multiple hard-

ware environment. The semantical problems, however, are surprising since

a considerable amount of initial development effort had been put into the

original COBOL specification to enhance portability. The use of a subset

of the ANSI standard set alleviated many of the semantic problems for

MARDIS. However, the use of "multiple-line code (duplicate statements,

each statement or group of statements targeted for a specific machine)

was especially necessary for i/O related code.

For example, the program PIOAYE, which updates and loads tables used by

other MARDIS programs, has multi-line code in the following areas:

9 INPUT - OUTPUT SECTION

e FILE CONTROL

* FILE SECTION

* FILE DESCRIPTIONS (FD)

* requests for CURRENT - DATE

* carriage control areas

e error return codes from SORT (IBM)

4-13

%V



Table 4.3.1-1 Compiler Implementation Anamolies

CASE I/O SEMANTICS OF CHARACTER
IMPLEMENTATION SET

1. SYSTEM DATES
* SYSTEM X

2. TABLE INITIALI-
ZATION X

3. GOTO DEPENDING
ON X

4. REDEFINES X

5. COLON X

6. FILES IN SUB-
PROGRAMS X

7. MOVE X

8. RANDOMLY ACCESSED X
FILES

9. INDEXED BY X

10. ASSIGN TO X

11. SUBSCRIPTS OUT
OF RANGE X

12. LINAGE CLAUSE X

13. SPECIAL-NAMES X

Xi14. LENGTH OF
PRINT LINE X

15. PARAGRAPH

NAME X

16. DISPLAY VERB X

4-14

il/iAM& '" Aiiil~l-n



The program P4OHAUE, which selects and formats records for the Cost

Reduction report, has multi-line code in the following areas:

e CONFIGURATION SECTION

* carriage control areas

It is significant that no multi-line code appeared in the P4OHAUE LINKAGE

SECTION. This tends to indicate that the areas which impacted the Porta-

bility of MARDIS most were those where the compiled code had to interact

with the operating system,i.e., in those areas which dealt with I/O.

Thus the design strategy utilized by the MARDIS conversion team is an

effective one for controlling Portability - restrict the language used
to a subset common to the target machines (necessarily slightly lower

in level than any single implementation language) and, in those instances

where the compiled code must interact with the operating system, control

the code through the use of a pre-processor. Had the standards and con-

ventions in effect during the initial development of MARDIS imposed these

restrictions on the developers the conversion effort would have been

significantly less.

MAINTAINABILITY

The Maintainability of MARDIS is impacted by the size of the sytem (54,000

lines of code), the lack of modularity, the lack of comments and the evi-
dence of multiple authors. The software criteria which relate to these

problems are conciseness, modularity and consistency.

The size of the system makes it less concise. Halstead's measure is used

as a metric for this criteria. The combination of the natural verbosity

of COBOL and the fact that quite a lot of information about the system is

stored in the program, for example as tables, contributes to the relatively

larger sizes of COBOL programs. Since the language and application mili-

tate against the conciseness of MARDIS, there is fixed "overhead" impact

on the system. This must be controlled as much as possible as the system

evolves during the lifecycle.

4-15

.,im A m I , t* J

m -i - • "~'I') -



It is difficult to implement modular systems in COBOL because of the diffi-

culty of coding subprograms. This results in larger programs than is

generally convenient to read or write. This impact on ease of scanning

or reading a program directly effects Maintainability. In order to in-

crease modularity, COBOL programmers tend to "localize" code, so that

single functions have all their statements isolated in a paragraph or

section. However, this is left to the discretion of the programmer and

is not a "natural" attribute of the language. In the case of MARDIS,

the average program length exceeded 2,000 lines of code.

The lack of adequate comments in MARDIS makes it difficult to identify

the function of particular groups of statements. Generally, COBOL is

said to be a "self-descriptive" language, which, relative to many lan-

guages, is true. The code, however, only tells us what is happening,

not why it is happening. This "why" aspect can be very helpful to the

maintenance programmer, since it can help him to identify the function

and avoid side effects in his modifications to the code.

In reading MARDIS code it becomes immediately apparent that there were

multiple authors involved in its development. On the face of it, this

is obvious given the size of the undertaking. Beneath the surface,

however, is the realization that a uniform development methodology with

adherence to uniform standards and conventions was not used. Uniformity

and standardization of coding practice, for example, in indentation or

naming of data, is an important aid to establishing Maintainability.

This does away with the need to learn many different personal styles of

coding and can lead to uniform product quality.

In general, the MARDIS doucmentation provided a good overview of the

MARDIS system, its purpose and its operation. However, the documentation

did little to support its maintenance. Maintenance-oriented documenta-

tion requires a greater level of detail in its description of design and

implementation strategies and description of the internals of the system.

4-16

L i mu .... .~w'd imm~~



GENERAL OBSERVATIONS OF ISDS

The initial version of the ISOS code reflected its development environment,

an R&D or prototype development. In such a development environment, more

concern is shown in the algorithm development or technique than in the

user interface or operability. The initial concern was to build a proto-

type quickly and utilize the prototype to evaluate the effectiveness of

the tool in support of a software development

Most of the personnel involved in the developr ic of ISDS were aware of

and practiced modern programming practices. In almost all cases, struc-

tured programming techniques and a structured FORTRAN pre-processor were

used. However, there were not coding standards and conventions or

enforcement techniques in place in the initial development and the re-

sult is that different styles or approaches to mocern programming

practices are evident. While this is a step above "unstructured" tech-

niques, the lack of consistency has a negative impact on the maintaina-

bility of the system, i.e., uncontrolled modern programming practices

are not much better than traditional techniques.

The conversion of ISDS to a production environment required considerable

effort but has resulted in a much higher quality product. The changes

made to the system, illustrated in Figure 4.2.2-1, indicates what specif-

ic attributes of the software where enhanced.

The documentation reflected the code. The interest was in the algorithms

and functionality of the software. Little concern was shown for opera-

bility or methodology of use. The transition to a production tool is

attaking that problem.

The modularity of ISDS was excellent. The average size for a module was

less than 100 lines of code. This attribute alone had a significant

effect on its transportation to other environments and its transition to

a production tool.

4-17

Phm '



4.3.2 SENSITIVITY ANALYSIS

The sensitivity analyses proved to be a very effective quality assessment

technique. The analyses possible with the quantitative data available

from applying the metrics provides an immediately useful quality a3surance

technique.

MARDIS SENSITIVITY ANALYSIS

Table 4.3.2-1 provides a subset of the statistics of the MARDIS system

evaluated. Note the large size of-the programs and the large number of

branches (most of which are PERFORMS). The profiles provided are inter-

esting from the standpoint that two programs were very large (over 10,000

lines of code) and represent maintenance difficulties just from their

size. Also, 27% of the programs contained most of the changes which had

to be made in transporting the system (greater than 10% of the code in

each of those programs had to be changed). These are the programs which

consumed most of the effort. This illustrates a benefit of the metric

analyses. These programs are identified and can be emphasized in plan-

ning for a conversion effort.

There were very few comments. Only three percent of the lines of code

were comments and in fact one-third of the programs contained no com-

ments at all except for a standard ten line comment at the beginning

about the multi-computer version implementation.

These type of statistics are not only valuable for quality control but

statistics on language construct usage contribute to new standards and

conventions and avoidance of future problems [ALJM 79].

4-18

p. , .' e

r **I



04 
0

A r

aL-
0D

oCD

0C)

0) LC)

0
U.)

CD.
0D

Ln0

m 0O

0 0

LU-

U.) 7

LU 0

- 0-
0C LL

LaI
zi -j-Ij w ICD

w v -) LU r
CD0 >-. u'. 0-

(AJCD C CD U-

0 -

-i 0 r

CALLO U L4..19

LL0C 0 Aia iI)



ISDS SENSITIVITY ANALYSIS

Table 4.3.2-2 and 4.3.2-3 provide a subset of the ISDS statistics eval-

uated. Note the high degree of modularity evidenced by the statistics and

the high percentage of comments. In evaluating these statistics at a task

level (subsystem level) considerable variance was realized in percent of

comments and average number of branches. We were able to establish

significant correlation between those statistics and the effort required

to transport and enhance the various tasks.

As a more detailed analysis, the metrics related to Maintainability and

Portability were calculated for a subset of the modules of the new ver-

sion of ISDS and compared to the old version. Figure 4.3.2-1 provides

some examples. The acronyms are indexes into the metric table in

Appendix B.

These values were then compared to a relative indicator of the effort re-

quired to transport and enhance the maintainability of ISDS, The relative

indicator represents the percent of the total effort to enhance the

maintainability or transport the system. Table 4.3.2-4 provides some

examples of this analyses. Our analysis of this data was aimed at

determining whether the difference between the metric score for the initial

version and the new version correlated with the effort required to produce

the new version from the old version, The following metrics demonstrated

significant correlation (correlation coefficients better than .75):

SI.4 Coding Simplicity Measure

SD.l Quantity of Comments

SD.2 Effectiveness of Comments Measure

SD.3 Descriptiveness of Language Measure

MO.2 Modular Implementation Measure

Sr.l System Software Independence Measure

MI.l Machine Independence Measure

4-20

P1



A surprising result was that the complexity measure did not improve

generally between versions. The reason was because we were using a

modification of McCabe's measure and there is no penalty for unconditional

branches, Therefore in cases where we went from an unstructured module

implementation to a structure implementation, and replaced GOTO's with

structured constructs. In these situations, the number of paths may

have increased or at least stayed the same, even though the structure was

more simple or easier to understand. This attribute was reflected in the

Code Simplicity Measure.

These types of analyses, using the quantitative technical statistics pro-

vided by the application of the metrics, can be a very beneficial aid to a

quality assurance person. The identification of how certain measures

vary in a system gives insight into the adherence to standards, what

characteristics need to be controlled by new standards, and which modules

vary from the average significantly and should be evaluated further.

-'

4-21

, " A



I-

LC,

0nL

93.

LA- C0

ok o

4-)

M C
S

00

Ln I-
0~~% LC)"Lt

V)C

C) W

V) 00(AV

0 D M 0 3

CAJL cn nLV L

- 00J 00J CDL~ ...JLL L

Ix~ LUJ
cm LUW 0i m mL

.0LL c CA L.> ~L U

0 -W
V) U- C) LZJ..0 La

.CJJ. tj > c .I V) L
I-0 LAI~ r-, LU LA

ALU - Le C = d

(LI 0. Li z -h L )

= cr LU co co LU U

4-22 :D (n u 06 0

9,C CD*



Table 4.3.2-3 ISDS Initial Version Statistics

AVERAGE STANDARD DEVIATION

TOTAL LINES
OF CODE (LOC) 85 54

LOC WITHOUT 52 43
COMMENTS

# OF DECISIONS 7.8 7.5
(IF, DO WHILE, ETC)

# OF UNCONDITIONAL
BRANCHES (GOTOS) 1.6 4.2

# OF EXITS/ 2.3 .9
ENTRANCES

# OF LOOPS 2.5 3.2

# OF STATEMENT 1.6 2.8
LABELS

# OPERATORS 47.8 35.5

# OPERANDS 59.3 45.8

% COMMENTS 34. 19.

# OF INPUT/OUTPUT 2.8 4.
STATEMENTS

# CALLS TO OTHER 4.5 10.5
MODULES

# OF SYSTEM .4 .9
SOFTWARE REFERENCES

# OF LOCAL 8.3 6.5
VARIABLES

# OF GLOBAL 3.6 3.9
VARIABLES

4-23



.1 MWL

Fur 4.3.2- et S cor Cparisons

g e



IWI

0 c0
LL.

LLi LiJ c..i 00 r. i, r

CD C%.I I L n lc L.0

>1
ccc

L,
4..i.

0- - - --
4.1

Ln3

C) 00c r- 0 .

IIx

m- en CJ 0D

C.C)

V, V

_j w U )a- C

o . c'. m w :r
cmM0 wC

CD -C-

I- Ln



LUO

LU LJ I P,

0r 0

m - N C) Ni co
-i N- Ni Ci tO L

C)

0

UC) -

LUJ

CC

4-,

CD

m CO *- -N. N

U- C 0

LU C) N- ~ U

I- CL

4-26 LU 'A -L C~
L~- m: X:

m U- 2: al u-3 n~~
CD 0 D 0 : 0 UCD C) -.
E -3.. L-) U-J(i CL V'n ' ~

- A-M



UL-

LUJ

LUJ

~~~L LU C\ A ..

('.1 '.0 AI LA

0

CDC

4~C)

C)

I-jO

C

LLU

u~110

LAJ

LAi ...J '. C. L

C) w n LOk

X: X: of - .0 jL

U-) L- A

LetU

AI

4.3.3 NORMALIZATION FUNCTION ANALYSIS

The normalization functions established in RADC-TR-77-369 [McCJ77] were

modified or further validated based on the additional data sample pro-

vided by this effort. In addition, a normalization function for Porta-

bility was established. The same process used in RADC-TR-77-369 was used

in this stud'.

Table 4.3.3-1 provides a summary of the metric scores (average score and

standard deviation) achieved by MARDIS and ISDS. These scores were cal-

culated as a consistency check to evaluate if the metric scores were

reasonable with respect to our experience of applying them to JOVIAL code

during the Factors in Software Quality study.

The results of the normalization functiona analysis and derivation are

shown in Table 4.3.3-2. The table identifies a multivariate relationship

as well as normalization functions calculated for individual metrics. In

most cases, the multivariate normalization function would b? the preferred

relationship to use because greater precision can be achieved with it,

The metrics related to Maintainability at implementation were an exception

to this statement. Some of the individual metrics showed higher correla-

tion. However, in this case, the sample size or the fact that several

dimensions should be examined would still encourage the use of the multi-

variate relationship. However, in cases where data availability or ef- V
fort to measure are limited, single metric relationships can be used.

Caution must be taken in using these results, Our sample size, even

though we have now applied the metrics to two JOVIAL command and control

systems (% 40,000 lines of code), and COBOL financial management informa-

tion system ("\ 50,000 lines of code) and a FORTRAN software support sys-

tem (% 20,000 lines of code), is still small to place too much confidence

in the results. It is significant, however, that relationships do exist

and our intuitions in establishing the measurements have statistical

reinforcement. As shown in Table 4.3.3-3, the measurements that exhibit

4-28

• al.

correlation to Portability and Maintainability, the quality factors

emphasized during this study, are logical. The metrics that did not

exhibit significant correlations are shown in Table 4.3,3-4. An

explanation or description of the action taken is provided,

4

r(. i

!4 L - 42
L S#4

S. #i i

Table 4.3.3-1 Metric Scores

METRIC AVERAGE SCORE SATANEARD DEVIATION

CO.] .12 .14

CS.2 .68 .42

ET.2 .02 .07

ET.3 .07 .2

SI.1 .87 .09

S1.3 .23 .25

SI.4 .57 .07

MO.2 .71 .18

GE.2 .35 .47

EX.2 .07 .26

.35 .16

SD.1 35

EE.2 .50 .16

EE.3 .85 .23

SS.1 .01 .01

MI.1 .21 .49

4-30

*~ .%*** -S

Table 4.3.3-2 Nomalization Functions

STANDARD CORRELATION
QUALITY FACTOR/NORMALIZATION FUNCTIONS ERROR COEFFICIENT

RELIABILITY (DESIGN)

Multivariate .18 M(ET.1) + .19 M(SI.3) .17 .87
Function

Individual .34 M(ET.1) .18 .82
Functions

.34 M(SI.3) .16 .85

RELIABILITY (IMPLEMENTATION)

Multivariate .48 M(ET.1) + .14 M(.SI.1) .33 .85Function

Individual .57 M(ET.1) .31 .83
Functions

.58 M(SI.1) .31 .78

.53 M(SI.3) .32 .78

.53 M(SI.4) .34 .77

MAINTAINABILITY (DESIGN)

Individual .67 M(SI.3) .28 .88
Functions

.53 M(SI.1) .27 .83

MAINTAINABILITY (IMPLEMENTATION)

Multivariate .61 M(SI.3) + .14 M(MO.2)
Function + .33 M(SD.2) -.2 .06 .78

Individual 2.1 M(SI.3) .185 .89
Functions

.71 M(SD.2) .29 .74

.6 M(SD.3) .23 .84

.48 M(SI.1) .15 .91

.43 M(SI.4) .17 .89

4-31

* *~r;

I L Table 4.3.3-2 Normalization Functions (Continued)

STANDARD CORRELATION
QUALITY FACTOR/NORMALIZATION FUNCTIONS ERROR COEFFICIENT

FLEXIBILITY IMPLEM'ENTATION)

Mukltivariate .22 M(MO.2) + .44 M(GE.2)
Function +.09 N(SD.3) '11 .98

.6 M(MO.2) .12 .96

.72 M(GE.2) .15 .93

.59 M(.SD.2) .16 .95

.56 M(-SD.3) .14 .96

PORTABILITY (IMPLEMENTATION)

Multivariate .19 M(SD.1) + .76 M(SD.2)
Function + .25 M(SD.3) + .64 M(MI.1) .05 .93

Individual 1.07 M(SI.1) .28 .90
Functions

1.1 M(MIJl) .33 .90

1.5 M(SD.2) .39 .86

4-32

IR
Table 4.3.3-3 Results of Normalization Function Analysis

(Individual Metrics Which Exhibited

Correlation to Quality Factors)

PORTABILIITY

SD.l Quantity of Conmments

SD.2 Effectiveness of Commients

SD.3 Descriptiveness of Language

MO.2 Modular Implementation

MI.1 Machine Independence

MAINTAINABILITY

S1.1 Design Structure Measure

SI.3 Complexity

SI.4 Coding Simplicity

MO.2 Modular Implementation

SD.2 Effectiveness of Coumments

/ 4-33

Table 4.3.3-4 Results of Normalization Function Analysis

(Individual Metrics Which Did Not

Exhibit Significant Correlation)

FACTOR/METRIC EXPLANATION

PORTABILITY

MO.1 Degree of Independence System level metric

(Myer's) - not calculated

SS.1 Software System Independence System dependencies were for

the most part alleviated by the

use of multi-line entries in
MARDIS code. Further evalua-

tion required.

MAINTAINABILITY

CS.1 Procedure Consistency System level metric -

considered anomaly detecting

metrics

CS.2 Data Consistency System level metric -

considered anomaly detecting

- metrics

SI.2 Structured Programming Little variation found

- dropped from candidate

metrics

MO.1 Degree of Independence System level metric

(Myer's) - not calculated

SD.1 Quantity of Comments The percentage of comments alone
did not show significant cor-

relation - considered anomaly

detecting metric

4-34

M
- 4

I!

Table 4.3.3-4 Results of Normalization Function Analysis

(Continued)

FACTOR/METRIC EXPLANATION

SD.3 Descriptiveness of Language Did not exhibit much variation

within system
CO.1 Conciseness (Halstead's The comparison of calculated

length) length with observed length

varied greatly

4'_;.

r=

4-35

1• Ad"

, . ,.

A

APPENDIX A

PRODUCTS PRODUCED IN TYPICAL ARMY SOFTWARE DEVELOPMENT

This is a listing of documentation required by the Army for software develop-

ment according to CSCM 18-1.

SYSTEM DOCUMENTATION REQUIREMENTS

CSCM 18-1, Paragraph 6.1.1.4

A System Overview will be prepared by the developer whenever a multicommand

system has two or more subsystems. The manual provides the needed interface

between subsystems in a modularly developed ADP system.

SYSTEM DOCUMENTATION REQUIREMENTS

CSCM 18-1, Paragraph 6.1.1.5

A separate six volume manual will be published, using the assigned unique

subsystem identification code for each application subsystem and for each

executive software subsystem maintaining a baseline as defined in Chapter 1

of this manual and qualifying as a integrated assembly of separate but

1 functionally interrelated programs, routines, procedures, or techniques
operating in consonance as an entity in the performance of a predefined

functional ADP task. Each of the six volumes is specifically tailored

to the various users of the subsystem and is intended to be self-con-

tained. The six volumes of documentation required for the application

subsystems and for the executive software subsystems determined to

perform predefined functional ADP tasks are described in the following

paragraphs.

EXECUTIVE SUMMARY, VOL I

CSCM 18-1, Paragraph 6.1.1.5.1

This volume will contain an overview of the subsystem to include the

objectives and general description written in nontechnical language.

t- A-1

aL

USER DOCUMENTATION, VOL II

CS04 18-1, Paragraph 6.1.1.5.2

This document prescribes the procedures that mustbe followed for successful
utilization of the subsystem. It contains instructions for the general use
of the subsystem, preparation of input, audit of output and interface proce-
dures between the functional area and the data automation activity. The doc-
ument will be presented in one of the two following formats: Functional User
Documentation or Users Procedures, Volume II. Users Procedures, Volume II,
is intended for those subsystems where the ADP developer is also the proponent.

OPERATIONS AND SCHEDULING, VOL III

CSCM 18-1, Paragraph 6.1.1.5.3

This volume will contain instructions necessary to schedule the subsystem, run
the computer, produce outnut products, and distribute the results.

REFERENCE MATERIAL, VOL IV

CSCM 18-1, Paragraph 6.1.1.5.4

This volume will contain all of the material which preceded the technical design

and analysis of the subsystem. This volume will not be distributed below the

agency maintaining the subsystem.

.. GENERAL SYSTEM ANALYSIS DOCUMENTATION, VOL V

* -CSCM 18-1, Paragraph 6.1.1.5.5

This volume will contain all of the material used or developed during the

technical design and analysis of the subsystem. This volume will not be
distributed below the agency maintaining the subsystem.

SYSTEM PROGRAM DOCUMENTATION, VOL VI

CSCM 18-1, Paragraph 6.1.1.5.6

This volume will contain completed material necessary to understand the pur-

pose and processing of a program used and developed during the programming
and testing of the subsystem. This volume will not be distributed below the
agency maintaining the subsystem.

A-2

I " "' ,. "+." ;: -...... .*

* a . ",I .

EXECUTIVE SOFTWARE AND SOFTWARE DEVELOPMENT TOOLS DOCUMENTATION REQUIREMENTS

CSCM 18-1, Paragraph 6.1.1.6

This portog of the chapter defines the detailed documentation requirements

for documenting executive software and development tools: i.e., macro

instructions, subroutines, stand-alone utility programs, and utility systems

operating primarily in support of functional applications subsystems not
maintaining a baseline as defined in the preceding paragraph.

TECHNICAL PAMPHLETS

CSCM 18-1, Paragraph 6.1.1.7

Technical pamphlets are used to provide DPI ADP personnel with information

such as language syntax, input sequencing, input coding instructions, and

other procedures necessary to utilize USACSC systems, subsystems, and

executive software. The use of technical pamphlets, however, does not

preclude the requirement for documentation of the software in application

subsystem or executive software documentation format as described above.

The content of a technical pamphlet will be determined by its proponent.

The preparation of a technical pamphlet will be the same; in general, as

for the preparation of application subsystem documentation.

* A-3

APPENDIX B

SOFTWARE QUALITY METRICS

The metrics established in [MCCJ77] have been refined based on the exper-

iences of this research study. The changes are contained in this appendix.
The changes are indicated to the far right of the table as follows:

m - A modification has been to the previous metric to make it more

generally applicable or to quantify it.

dl - The metric was deleted because it was too difficult to measure.

d2 - The metric was deleted because it was not generally applicable.
d3 - The metric was deleted because it was redundant with another

metric.

a - The metric was added based on further research.

Also indicated in the table that follows is whether the current state of

the metric makes it an anomaly-detecting metric or a predictive metric. If

a normalization function has not been established for the quality factor
* the metric corresponds to then it is automatically an anomaly-detecting

metric. In cases where a normalization function has been established for
a quality factor but the metric is not included it is because the metric

* did not illustrate sufficient correlation with the operational history.

In lieu of inclusion in the normalization function, some metrics are main-
tained as strictly anomaly-detecting metrics. They are felt to identify

or assist in identification of problems which should be and are typically

corrected immediately to enhance the quality of the product. An (a)
beneath the criterion/subcriterion name identifies an anomaly detecting

metric and a p) identifies a predictive metric. As further research in
software metrics continue, more predictive metrics will be identified.

One last indication has been added to the table. Within the boxes that
identify during what phase a particular measurement element can be taken,
a reference to what Metric Worksheet applies is given. The reference is

B-1

-

to the worksheet number such as Worksheet 1 or Worksheet 2a and what
section of the worksheet such as Section III or Section VI. The Metric
Worksheets are contained in the Software Quality Measurement Manual

[Vol. III. Explanations of the individual measurement elements follow

the table in this appendix.

I

2(a

B-2

1111111' -% A4

-E e E

o k uqwr~ip

,- -

-~ _ ~ L~L~ LJLj.

RII V)r 211 f
_i laL ~LJ ~~ L

VI
II

.L_ _ _ _ _ _ _ _ L

CC

40 7 m I4-
0 0L 0

* ~4-) U 0

0~ * '~ --- 0 C~U to
4. -) L = G) 4- 4.)

0 49 U '4- '4- C cr0

41 00 I
43C C) 0

M 0. .4- . *I 4- c S s-
o 4- w0 4~ C 0 *0 0- 4J
4.) 9 O* u' '-- ;n C

0 4-W u S- 0L
U)~4 Co -. 0'6 79 0-.) '6n *

a -0 Z *0Z '4.- >4- m ~
c 0. cI' 4-- CA *- 004 S

o t ;; t *4' A Q0) un E. >0
0o W C S- 44- In to0 0- CL- 3) 4

0a) 0 *-6. In 1 $- 0 UE 0 -- *
E) J C-' (A C4- U CL 0) L C4 0

a.W In 0-) - 0 ' 0 Ci. 4j 4-o 4A4O-

CA U i +j.4. CS. z-) %.- L.In
- CO c. C an . uC U14-' o4*- CL. 0

46 - 0 tv V o W 0 6 3.).C 0

'6 L) S.. W 14 4 - to0 S.- 4.)
11 -CC U'a 4-" 0 00. (A

E.. 4 ' CU C- 4-0 0. 4JC4.z)S- (
LL 0 c. to SC~*- W n. l -~

0 i) Ln 4.. r_0 0- 4- 0~ r- .0-9 0
U I 01-0 C00 00 InC~4 CU 0- a) 4)-I 0. 0 00n S 4) .

0do 0I 0. C'@ 1-In C1I- ,
1.. LL ELL/*) m to 0C0 0~ '6-

0 ...J LI 1 4)J 4- 0 CA0 CO M-.4J 00

4,) '64. -4) o W C -U ---.- n I'
In cz - 0 .0 L cc -cc- 4U CL0 CL 0 I-Q) o

I--

- IO LUJ

La L

LaU
U L u

- B-3

.
U

P - 23

-L -U

CK"%

L&J
2cJ

-4J

41f

:w0O

401 -1 in

r- 4A- r- 0@ 0 k-
4M .4 L. 04 L. -L , a o C AL.& v

n 6nv0 p- 41 O IA 06 Q6"
W E , >v 1w - .-. 0L. 0 W- ..-

IA @1 = 41 =1 .. 4 S LI Z 414 d
m L00V 0 10 .11 a CO c I... . .- _a-S .

Z 0.6. UC4C CL4M. a1.' 0o 4-6 fA
06 06 qb 5.5- ,

L) - 04- 0' ;.a. 0 U. A
L z - C~ >14 U:P1 U. >4 c 4- D. If .0 - k U0

MI r- c uc 0 4J 0 C n aRI U
1-. .- I 4VI 4)I C(A.. M 40 4IA - C .- 0A) 41 IA

S IA1 do 6 -0. 4 6 4k 4J 4) to 40 atWt 4-j

cn5 .00 41 m 41 = -.4 0 0 a 5 0 C 4 0 4J
Z 0 '41 #A 0'p.c 4 LUJ '541 0 c'4 IA 4

4J 0
SM a54 ft k 4-'4 ft 4k n' C .4C: c-4 5) IA

LUS cn-- tU LUI LU n I

U ci

LIL

L5~~S 9x "-L

B--

- Li

L L

4o 0-t
C-

4) w a# 0 S- M 41
V0 L. C S

41 41
M~ a0~0 -41 1' C 4J .0

0. ea j 4J r.- 4J
(A aCL c q. q. so 04.0 .0 41- u14J U = 0 . 0 4. UJ. In 4

I ;J =4) 1 0L0.
41 '.1 w j. e ~ ~ a

ce ~ '-L .X 6 -

0. - 4J C)) 41. S. CA o~~~ a - - LYOM q
-41 0 J .IE)L

-i --
S.Ua aa -11

j 41C J

S. u ui C
-m4aU t i l

S. V W V : I* a) p 41 41

LLJ c L. c0
.1c m/ LJa L v w U 39-(

C7,

LXIWL JimL~

- LaI

#A -__

- 4'

um aO ai a ..-
aa U

,j.% 41 4-01 . Z . -- Sr CI- 04 a 4 ccl- ICUa

u ic4. f ox
'.- ; ' A - I . IAa4

m -4.1 Ul 4 .

0~~aa 4J 40a'AUi

(- cc -0 .c- -~ 'A
cA -0- W 10

LLI 4-A 0 4-DJ- 10 L EiC "

'co 0,*0

M 41 0. U 0to -P Ouo

0- ~ ~ -4- -. 1

* f - ..4rL . &I W

LU.

IAJ1

_ _ _ U _ _ _ _ _

IV-, o %

I!IL.ta _- - K
A.9

a -
II_ _c 4.81 4 i

Go 0 0

C4 CM

- c

W aiR ~- . Lb I-

54141.. *I U -7

~ rrm

II 1112_0_
-I- c

1. 48
4in

0K

CL a. a. U4

41 41..~ A) -- .

0 4A0 *

CiAN 11 C

:1 A

%a fl c-a

u.

CA U

I- Lai

0

200

Li 3
Q.II~ C AJ~

Is- 4J 34A oE

c~I W5 'A U4, -"S

IA- - c 4.4EUx 411 sc s.

141 41r. IA4 . Aa
-k u 0 . ' - EUj

0 C ~ ~0* EU EU S S si- -. 1s II.
-; 0 46- 0 U 0 0 E

-44

-L - -- -

-cJ (.) c U a0~ 1% CL O

I-M

L).J a'. I. k
3 MCI

Go c

0 I0

B-9

- w - - Lai

1.-

6-

uuuu
___i__

_

F;

.6.0

4A 41 L...w.6

to L. S I

IV~ #A IC

LI - In

CA - --

- BE] MU 0 U*

_ ilIU
elm !g_ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _

L~4J

L. ?A= -

a M= -: I-J2vs-

L. 4J 06 f
-L -46 L 6 0

"Z LI aL.0 4

M Q 460a 4
46 41

Z 4J S 0=664j
-0 80 C 0 4J

LX- 4 ~4446 W 6 OI

__j ~t SO -

CY 466w.
1. .0 460kw

5 4 MI4)464 464.
C fS. 44

46 MI4L 6 4

NOW4 1k-4 L 44~

31 -L I

LU aco
CA.~ a

IAC"4

o0 CI a~g o o
U C- 0.~. I. I 4k . a. ~ -=.--

-' - -.. -

uw L-w
Lu-

ac
Lu 0 1.C

La~ 0

U- --

M~ ~ - ..- - -~7

4 .

L&.

Ln

US. -

r-5 41n a U *

V w 38(.48 cOU
40 -n I, 48 C -u

1 ~ ~ ~ ~ .c S 'aC aC
ow 8 a.* 03 .n -I~ ! #a -

COU - V IV 0v.-

cm en an _, 00 m

-;I S. V as #A
c. 0 4J 0- wn u.J 1

4' U4 0. ie- - - 0 IVAO0
3-CP .) 0 4 4 02 1#-Oa u'? ;-:; ;

L" C V 0 ~0 8- 9.I 0%- C I*
o a80 #a *0 0I 0, *8-001 - 0 % . U.-

4-.. -"W Is 'A 41 4-b.3

u u 41 . L

1. -41 ,-
m -K

05 1 1----
CM XM - n

CA 0

- 8-13

I4 pool

LAl

-JA

LbI

wC
LA0

=D(A (

4c -
Q. OIL4.

4A 0 0 4.

0.0Z 0A S.. Z.t.0 I
00J soJ0 0 0~ 0

W A) u.) 0W0 -0

1-lAO~~4 W441 1- C U 20

M50 ou S.41P 4lo c0.@ W 4- C3 C V r
-1 -I4' a a 5 4.'C -

.01 7ZC 4.0 v oW (U 1. ~ 0
U)I 'AJ C W) 00 C- U) S.. .. L 4W= 4J- Z vs -00 0- 0 CC,- CL w4.14J 4J W f Z 4)z 1 '401- IV I a 5- .- 0 4

4.110 - $- .00$2. . z ~ -o 1. g -" I
e- c 4N1

"k 3. L. %A 41 g- 1. .8

-1 C, -- (6) -10 c10. 1 414 0 LA4J.-- U2 W t

I- 'A-
-L 5-*. -0 1. 4- 4 ,

I.- U J4A C2Gof -. 4 wV -S

F- 4J4J 0to4- .

4-i 44 . o

A' M" 4-A 41 *.. ft4

IM-
I- -J -j

V - (IC IL2 Li LJ uEJ

Lai.

LL. L _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I

o to
9-4

40

41v 41 S.L E

c 0 C 4.2-
6

.- 0m - .'a

41 4 1 >11 C 9 0 in 0 %A ' o

- 0 In 4-' 1 .6 14 6 .44

Laj 0. S- 0. a -. ft.

to I I- 1 I n IJ I I.I LI

4c ..

ZCC 01 41. 004

41b L6 LA. 40 I-- -
9-00 U~ I II.~ 0

L
AA1

j I n I
21. 41.V)L I 0 4J1 1 16 41

(A Z 4C 1 . ~ - 4 C C

Itot6 C In - L4
I-UII - 5

CD LJL L

V)

~ ii

aida

- a-J

4/10

CC4

Q 0) 41 41

41 S- 4L1t

C4 U. 0 1
C0 (a 41aQ 00

4U W ;" 41 0 C

V. 'AC -j S.; -
16. - , .0 74 66 CC

to.t a. o w a c 0 to 'a0 t
- : M= ~ 0. 4

4j41 I'M1 0 0 a-L fO 4
4' q. 4) -f ., %, S-- e. 0.- 4J C

IV " 0 0 r, I
c.5. CAL~ 12. 4

4A 4a cc 01 0 0 n a n s 5.~
01-~4 2C

4
41 U01. g,1- o 4

MM14 0 0 . 0 4j 0 0 4 -M LI Q5 a' 4 1 0 0 "a - 4 - C1 -0 1 V 14

.1k'0 0. .0 u ~.3 t. '0 0 U. C0 l0 4

u41 V ~ C41 =n 41.0 Ewo 4 C- 1
0.-.' - ' 0- a.)a,, -O 0 ~ 4' 43.~~ 4

4 '
E 4'

4'~~~~~~04 <,~ - -O- (l L 4 O 0 4 '0 ~ 4 -~

L -m ~ *-a

L.

ama.

L U. O

B-16-

~~it-

LLJJ L
d:C L J -D

V) 0

LAJ

06 0)~I 'A L

=~(411

CU L

4J
cm = 0

MJv 4)

ftlVI E

I) .
Vi4-Ei

z
E 0j

.~Vi uj

1JU V

olo -

oLU-
_j - Ccl

LU. nM
_ _ _ LiLJ L a'

LUI

L
a

4 0 41

2-Z 4- a
<U A F I S
m 4 4, (AO C0
o 5I flj- w up

-L LU 0 w~(
-. 0 2 O O 4" 0 ' O

41 4. 'W . 10

-~4 do 4.2 - Li . 0 ~ O 'j u 4 -O
~ z a.'. ON . 0.0 44. c

-~~~ LU LUIS (A 0
I- LU C I 41 L0 2 A ~. W+ L
LU ~ (D - - 0 4' 0 A C- 4z c a - 0. 2. to UO

2- - -W -~) .4J
=U VU LUb M -0 :s o

CY LAJ8 .10 O's 1(8 m-

LUI- Cn 01a z 0 UU9 C 01, W Ar'0. r. 'O.O Wg
VU u

4) I- 0 "t #a. C' 0 5-
u. i - - -=. 0 141

.0 cm m

U;

LUJU0

C- 18

in4,),

LL'I

I-

4n- '
L~j

CC

'A 4-
4-))

Cc U 4JUE u 4 0
VV

0 u05

0LA~ r- Vs 0 CA~ 4-) I 0) c0 .1 w 41
0 ' 41r- C (C N raN1

x 4)1) CL A ~ . O'A c ~
1n0 4u C) £4 0' CL ou0

4- UU- 4- V*4) u cc I 4
4-0 z 0)%4-do-4 I$--E a,-t 0 4 ~ 'm U 00 VV 0)00

a IA 0 c 4 ! 0. 4k 55- Q6 4. IC u

c. 4j)I 0 - . Pu L4-4JV x. 01) z'0 - ulto4- u 0 00 z "4, t
Z) C 4- 4 .4- 4j LoC-.x0 0 xC j

0 c-4) (A 0)0 02 mL - V I
*' c- 004 r. La 'A #a4 -ii x G C (V 0C 4j C.. LAJ 0. v0 .- E U o 11 ~ 44-' 41)U c

0 4 4h L6 a .0 X f ~ C * L)
.) 1 -2 1 "k 40 v4) E

4- 0) - U :Il41- - 0 a4-1 0)= 4-)0
-. 41 A - a.a

KA L 3LJ0 4^. OL".

~~ I-

LII

- B-19

FRI -I~ -Il ,'

- - r

acr 4ri .

UI-

- .

tu LU

SLU Oft

oall

Ire -P-

4',
#A)

af w -- 41(l I

.0j c a 4 -10
10 IF ME# I0 ; n

9b. 4-P. 10 41

Go' C - - - 10. 0-G4J 44

Uq. a,., 4) C~n 4J

4.' P C 4- Q C. fill 4J4 US 4I ' ZC 4 7
a. 'A- 06- Z4 4Uf

.0 0 4- 0 U- 4J 4J I

Lu . L. M. 14 I -
o~t -% qkI- % -

c2 - - - - - ;: ;;

-a L , , -

B-20

Ewa;;

Lai~

31- W

a
4AA

41 (A

&O 5

I* - C

4'A.

LA c

L" ' 4164 L~

0 0 Ilk
U Ub WC

CL.- L..-

ci 00
vi $A

514 CA -L CL

z~
of -of

aIA A.J 4.
15A E4 O I

6B 2

- - -

l~a., C.

I- I I ,U _ _

-L Roo -

20-1 m~ mm
o J

LIJ

LL.0

& 41'

L. CL S C .-I.. -D a .
"a U)~ a . 0 :'A,
W-o L. S0- C 0 dEC

L. c -0 0.
"a c 41 41 4 40

05- 1. 1. 4qu 1.4 -

L. 90 , C I .. I5 a .

41 s 06'OJL = aI(I

0 IW 01 0 0CX C
-i- 0'l. S .0 E u 0b (al 4I . i S - I U 4LIJ 0-0 QS Z 3. 0 4-31 ~ S

c 45 &,a u O.
Li GAu L0 u 5. c .4- W4 - V 0 '

2- .0 06 L. 1
'--0 0. Eu .4 .01- 'A N ~u to~~4 C 0 L .0 0 EuA 7.; ~ i S0 E 0. OU .. 0 U W

c 2:6 1 .0 t- WC- w#A IL'.

a

CD 21 f- 1

u

8-22

z- 0~* ILA_-

IJ

4A -i

a O m

4.) c

:N 41-

43, 4' .1 W

- 4ft

Q. W (A~ 1. A
go,.0.U 4 4J 4

cu 6 4) ~ R I

0 4- CLu

Lhi 4V 4 h :cu L
.f$A 0. C c I

411U CL 0'4. $A ~ .4 4) CL L . 1 #
too. L.G V0:4

4.1 do1 L LI 41.. 0. 64.Z4- 0%41 10, 41 w~ 0. .cCA R
di E £41 .iv .U L ~ ' -4 0

- 0 EmCC c414

41 4'.P 4J. 4- ~0 4 @ c4W=4JU '-'0 0 C.LCCL -0 .C I 4'I !5 1 .104 --

a u i3 a lo v~ 4' 4';0Is - C X C 0. V: Z al.J41

Isy %n - Y U -

B-2

LLLI
LiiU

Lnn

-A-

Go 1

L ON-

Q. =

H. -

ola

0of

I.. 4.-

B-24

VV
Lii i
LUl -I L ___

CAC

R LLLi i L U _ _ __ _ _

~0

I..-

4) 6

~4)C) toU
4J r0 4) -j 4

ul~ ~ ~ U04 -4

'4- In-4 In In I
LA 4 4 4v0 i 0 0-

2C U I'llE04 0 41 4 ulU 0

0 d 4 j .0 4U- O -

-LJ4~ I~ 0 4.' EC 4J
0.40 I 0 0 0. q- Il 4-0.
U)J 01 -G 0A 4- 30

CL- 0 M1 4
ui ~ -- 0J Z 0U 1 041 -

(I C) 0.0I 4A 4I 4

13 3I --

- -

~B-2

- pL.
11111 II4p

4A rcn
_ __ __

IL0 1- C, I a

w C'

4C3

o CA

*Z I

40.

It I. U E

B-26

4A C,

LI U
o o1

4AJ K Ip
- La

I- LA

c. 4 01
0L -

406 0 4'c t.

W 4 # - - U)
ui I "a 0 r.

4. A 'A to I

0 W A - L
' -5 5 * .a 4.. -

u~ ~ 3 S.U4'

4'O~t 4- 0 4 j

4j C L CP L CL4 0 LA 0'.

LAO~~4 (A 5 A ~~ - S uj

- -2

, iNS

CD

L.

Li.1

L~

* L

CD

I.)

'C'm E

r_

in V

B-28 J.=

I|

EXPLANATIONS OF METRICS
Each metric and each metric element are described in the following paragraphs.

Indication is provided if the metric is applied at the system level or the

module level and during which phases.

Traceability

TR.I Cross reference relating modules to requirements (design and imple-

mentation phases at system level).

During design, the identification of which itemized requirements are satis-

fied in the design of a module are documented. A traceability matrix is an

example of how this can be done. During implementation, which itemized require-

nents are being satisfied by the module implementation are to be identified.

Some form of automated notation, prologue comments or imbedded comments, is

used to provide this cross reference. The metric is the identification of

a tracing from requirements to design to code,

Completeness

CP.l Completeness Checklist (All three phases at system level).

This metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Unambiguous references (input, function, output).

Unique references to data or functions avoid ambiguities such as

a function being called one name by one module and by anotherIname by another module. Unique references avoid this type of

ambiguity in all three phases.

(2) All data references defined, computed, or obtained from an

external source.

Each data element is to have a specific origin. At the

requirements level only major global data elements and a few

specific local data elements may be available to be checked.

The set of data elements available for completeness checking at

the design level increases substantially and is to be compiete

at implementation.
B-29

at"..

(3) All defined functions used.

A function which is defined but not used during a phase is

either nonfunctional or a reference to it has been omitted.

(4) All referenced functions defined.

A system is not complete at any phase if dummy functions are

present or if functions have been referenced but not defined.

(5) All conditions and processing defined for each decision point.

Each decision point is to have all of its conditions and alter-

native processing paths defined at each phase of the software

development. The level of detail to which the conditions and alter-

native processing are described may vary but the important element

is that all alternatives are described.

(6) All defined and referenced calling sequence parameters agree.

For each interaction between modules, the full complement of

defined parameters for the interface is to be used. A par-

ticular call to a module should not pass, for example, only five

of the six defined parameters for that module.

(7) All problem reports resolved.

At each phase if the development, problem reports are generated.

Each is to be closed or a resolution indicated to ensure a

complete product.

B-30

jol

Consistency
CS.1 Procedure Consistency Measure (design and implementation at system
level).
The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Standard Design Representation.
Flow charts, HIPO charts, Program Design Language - whichever form

of design representation is used, standards for representing the
elements of control flow are to be established and followed. This
element applies to design only. The measure is based on the number of
modules whose design representation does not comply with the standards.

(2) Calling sequence conventions.

Interactions between modules are to be standardized. The stan-
dards are to be established during design and followed during
implementation. The measure is based on the number of modules

which do not comply with the conventions.

(3) Input/Output Conventions.

Conventions for which modules will perform I/O, how it will be
accomplished, and the I/O foimats are to be established and

followed. The measure is based on which modules do not comply with
the conventions.

(4) Error Handling Conventions.
A consistent method for error handling is required. Conven-

tions established in design are followed into implementation.
The measure is based on the number of modules which do not

comply with the conventions.

B-31

,..

CS.2 Data Consistency Measure (Design and .0plementation at system level)

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Standard data usage representation.

In concert with CS.l (1). a standard design representation for

data usage is to be established and followed. This is a design metric

only, identifying the number of modules which violate the standards.

(2) Naming Conventions.

Naming conventions for variables and modules are to be established

and followed.

(3) Consistent Global Definitions.

Global data elements are to be defined in the same manner by all

modules. The measure is based on the number of modules in which

the global data elements are defined in an inconsistent manner

for both design and implementation.

B-32

.4

Accuracy

AC.1 Accuracy Checklist (requirements, design, implementation phases at
system level). Each element is a binary measure indicating existence, or

absence of the elements. The metric is the sum of the scores of the

following applicable elements divided by the number of applicable elements.

(1) Error analysis performed and budgeted to module (requirements

phase only).

An error analysis must be part of the requirements analysis performed

to develop the requirements specificatioi. This analysis allocates

overall accuracy requirements to the individual functions to be

performed by the system. This budgeting of accuracy requirements

provides definitive objectives to the module designers and

implementers.

(2) A definitive statement of requirement for accuracy of inputs,
outputs, processing, and constants (requirements phase only).

See explanation above (1).

(3) Sufficiency of Math Library (design phase only).

The accuracy of the math library routines utilized within the

system is to be checked for consistency with the overall

accuracy objectives.

(4) Sufficiency of numerical methods (design and implementation

phase).

The numerical methods utilized within the system are to be consis-

tent with the accuracy objectives. They can be checked at design

and implementation.

(5) Execution outputs within tolerances (implementation phase only

requiring execution).

A final measure during development testing is execution of mod-

ules and checking for accuracy of outputs.

B-33

&m
'~!

.... I
k

"

Error Tolerance

ET.1 Error Tolerance Control Checklist (design and implementation phases

at system level).

The metric is the sum of the scores given to the following elements dividedIby the number of applicable elements.
I

(1) Concurrent processing centrally controlled.

Functions which may be used concurrently are to be controlled

centrally to provide concurrency checking, read/write locks, etc.

Examples are a data base manager, I/O handling, error handling,
etc. The central control must be considered at design and then

implemented.

(2) Errors fixable and processing continued.

When an error is detected, the capability to correct it on-line

and then continue processing, should be available. An example is

an operator message that the wrong tape is mounted and processing

will continue when correct tape is mounted. This can be measured

at design and implementation.

(3) When an error condition is detected, the condition is to be passed up to

calling routine.

The decision of what to do about an error is to be made at a

level where an affected module is controlled. This concept is

built into the design and then implemented.

ET.2 Recovery from Improper Input Data Checklist (all three phases at

system level). The metric is the sum of the scores of the following appli-

cable elements divided by the number of the applicable elements.

B-34

- 4.

(1) A definitive statement of requirement for error tolerance of

input data.

The requirements specification must identify the error tolerance

capabilities desired (requirements phase only).

(2) Range of values (reasonableness) for items specified and checked

(design and implementation phases only).

The attributes of each input item are to be checked for reason-

ableness. Examples are checking items if they must be numeric,

alphabetic, positive or negative, of a certain length, nonzero,

etc. These checks are to be specified at design and exist in

code at implementation.

(3) Conflicting requests and illegal combinations identified and checked

(design and implementation phases only).

Checks to see if redundant input data agrees, if combinations of param-

eters are reasonable, and if requests are conflicting should be docu-

mented in the design and exist in the code at implementation.

(4) All input is checked before processing begins (design and imple-

mentation phases only).

Input checking is not to stop at the first error encountered but to con-

tinue through all the input and then report all errors. Processing is

not to start until the errors are reported and either corrections are

made or a continue processing command is given.

(5) Determination that all data is available prior to processing.

To avoid going through several processing steps before incomplete

input data is discovered, checks for sufficiency of input data

are to be made prior to the start of processing.

ET.3 Recovery from Computational Failures Checklist (all three phases at

system level). The metric is the sum of the scores of the following appli-

cable elements divided by the number of applicable elements.

B-35

(1) A definitive statement of requirement for recovery from compu-

tational failures (requirements phase only).

The requirement for this type error tolerance capabilityare to

be stated during requirements phase.

(2) Loop and multiple transfer index parameters range tested before

use. (design and implementation phase only).

Range tests for loop indices and multiple transfers are to be

specified at design and to exist in code at implementation.

(3) Subscript checking (design and implementation phases only).

Checks for legal subscript values are to be specified at design

and coded during implementation.

(4) Critical output parameters reasonableness checked during

processing (design and implementation phases only).

Certain range-of-value checks are to be made during processing to

ensure the reasonableness of final outputs. This is usually done

only for critical parameters. These are to be identified during

design and coded during implementation.

ET.4 Recovery from Hardware Faults Checklist (All three phases at system

level). The metric is the sum of scores from the applicable elements divided

by the number of applicable elements.

(1) A definitive statement of requirements for recovery from hardware

faults (requirements only).

The handling of hardware faults such as arithmetic faults, power

failure, clock interrupts, etc., are to be specified during require-
ments phase.

B-36

..

A.!

(2) Recovery from Hardware Faults (design and implementation phases

only).
- The design specification and code to provide the recovery from

the hardware faults identified in the requirements must exist

in the design and implementation phases respectively.

ET.5 Recovery from Device Errors Checklist (all three phases at system

level). The metric is the score given to the applicable elements below

at each phase.

(1) A definitive statement of requirements for recovery from device

errors (requirements only).

The handling of device errors such as unexpected end-of-files

or end-of-tape conditions or read/write failures are specified

during the requirements phase.

(2) Recovery from Device Errors (design and implementation phases

only).

The design specification and code to provide the required

handling of device errors must exist in the design and implementation

phases respectively.

Simplicity

SI.1 Design Structure Measure (design and implementation phases at system

level). The metric is the sum of the scores of the applicable elements

divided by the number of applicable elements.

(1) Design organized in top down fashion.

A hierarchy chart of system modules is usually available or easy

- . to construct from design documentation. It should reflect the

accepted notion of top down design. The system Is organized

in a hieracrchal tree structure, each level of the tree represents

lower levels of detail descriptions of the processing.

B-37

,~ . L,

" - , ~. .,.

(2) Module independence.

The processing done within a module is not to be dependent on the

source of input or the destination of the output. This rule can

be applied to the module description during design and the coded

module during implementation. The measure for this element is

based on the number of modules which do not comply with this rule.

(3) Module processing not dependent on prior processing.

The processing done within a module is not to be dependent upon

knowledge or results of prior processing, e.g., the first time
through the module, the nth time through, etc. This rule is
applied as above at design and implementation.

(4) Each module description includes input, output, processing,

limitations.

Documentation which describes the input, oitput, processing, and

limitations for each module is to be developed during design and

available during implementation. The measure for this element is

based on the number of modules which do not have this information

documented.

(5) Each module has single entrance, single exit.

Determination of the number of modules that violate this rule at

design and implementation can be made and is the basis for the metric.

(6) Size of data base.

The size of the data base in terms of the number of unique data

items contained in the data base relates to the design structure

of the software system, A data item is a unique data element

for example an individual data entry or data field.

B-38

• V, . .

(7) Compartamentalization of Data Base

The structure of the data base also is represented by its

modularization or how it is decomposed. The size determined

in (6) above divided by the number of data sets provided this

measure. A data set ccrresponds to the first level of decom-

position of a data Dase, e.g., a set in a CODASYL data base,

a record in a file system, a COMMON in FORTRAN, or a Data

Block in a COMPOOL system

SI. 3 Data and Control Flow Complexity measure (Design and implementation

phases).

This metric can be measured from the design representation (e.g., flowcharts)

and the code automatically. Path flow analysis and variable set/use informa-

tion along each path is utilized. A variable is considered to be 'live' at a

node if it can be used again along that path in the program. The com-

plexity measure is based on summing the 'liveness' of all variables along

all paths in the program. It is normalized by dividing it by the maximum

complexity of the program (all variables live along all paths).

(See [RICHP76] and page D-16 of Volume II.)

SI.4 Measure of Simplicity of Coding Techniques (Implementation phase

applied at module level first). The metric at the system level is an

averaged quantity of all the module measures for the system. The module

measure is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Module flow top to bottom.

This is a binary measure of the logic flow of a module. If it

flows top to bottom, it is given a value of 1, if not a 0.

(2) Negative Boolean or complicated Compound Boolean expressions

used.

Compound expressions involving two or more Boolean operators and

negation can often be avoided. These types of expressions add

to the complexity of the module. The measure is based on the

number of these complicated expression5 per executable statement

in the module.
B-39

l'

(3) Jumps in and out of loops.

Loops within a module should have one entrance and one exit.

This measure is based on the number of loops which comply with this

rule divided by the total number of loops.

(4) Loop index modified.

Modification of a loop index not only complicates the logic of a

module but causes severe problems while debugging. This measure

is based on the number of loop indices which are modified divided

by the total number of loops.

(5) Module is not self-modifying.

If a module has the capability to modify its processing logic it becomes

very difficult to recognize what state it is in when an error occurs. In

addition, static analysis of the logic is more difficult. This measure

emphasizes the added complexity of self-modifying modules.

(6) Number of statement labels.

This measure is based on the premise that as more statement labels

are added to a module the more complex it becomes to understand.

(7) Nesting level.

The greater the nesting level of decisions or loops within a mod-

ule, the greater the complexity. The measure is the inverse of

the maximum nesting level.

(8) Number of branches.

The more paths or branches that are present in a module, the

greater the complexity. This measure is based on the number

of decision statements per executable statements.

B-40

- W7

(9) Number of GOTO's.

Much has been written in the literature about the virtues of

avoiding GOTO's. This measure is based on the number of GOTO

statements per executable statement.

(10) Variable mix in a module.

From a somplicity viewpoint, local variables are far better than

global variables. This measure is the ratio of internal (local)

variables to total (internal (local) plus external (global))

varialbes within a module.

(11) Variable density.

The more used of variables in a module the greater the complexity

of that module. This measure is based on the number of variable

uses in a moduie divided by the maximum possible uses.

Modularity

MO.2 Modular Implementation Measure (design and implementation phases at

system level). The netric is the sum of the scores of the following ap-

plicable elements divided by the number of applicable elements.

(1) Hierarchical Structure.

The measure refers to the modular implementation of the top down

design structure mentioned in SIJ, (1). The hierarchical struc-

ture obtained should exemplify the following rules: Interactions

between modules are restricted to flow of control between a pre-

decessor module and its immediate successor modules. This mea-

sure is based on the number of violations to this rule.

(2) Module Size Profile.

The standard module size of procedural statements can vary. 100

statements has been mentioned in the literature frequently.

This measure is based on the number of procedural statements in

a module.

B-41

(3) Controlling patameters defined by calling module.

The next four elements further elaborate on the control and

interaction between modules referred to by (1) above. The

calling module defines the controlling parameters, any input

data required, and the output data required. Control must

also be returned to the calling module. This measure is base..

on the number of calling parameters which are control para-

meters. The next three are based on whether a rule is vio-

lated. They can be measured at design and implementation.

(4) Input data controlled by calling module,

See (3) above.

(5) Output data provided to calling module.

See (3) above.

(6) Control returned to calling module,

See (3) above.

(7) Modules do not share temporary storage.

This is a binary measure, 1 if modules do not share temporary

storage and 0 if they do. It emphasizes the loss of module

independence if temporary storage is shared between modules.

Generality

GE.I Extent to which modules are referenced by other modules (design and

implementation at system level). This metric provides a measure of the

generality of the modules as they are used in the current system. A mod-

ule is considered to be more general in nature if it is used (referenced)

by more than one module. The numier of these common modules divided by

the total number of modules provides the measure.

B-42

,* .'

WIT,
GE.2 Implementation for Generality Measure (design and implementation

phases). This metric is the sum of the scores of the following applicable

elements divided by the number of applicable elements.

(1) Input, processing, output functions are not mixed in a single

function.

A module which performs I/0 as well as processing is not as

general as a module which simply accomplishes the processing.

This measure is based on the number of modules that violate

this concept at design and implementation.

(2) Application and machine dependent functions are not mixed in

a single module (implementation only).

Any references to machine dependent functions within a module

lessens its generality. An example would be referencing the

system clock for timing purposes. This measure is based on the

number of machine dependent functions in a module.

(3) Processing not data volume limited.

A module which has been designed and coded to accept no more

than 100 data item inputs for processing is certainly not as

general in nature as a module which will accept any volume uf

input. This measure is based on the number of modules which

are designed or implemented to be data volume limited.

(4) Processing not data value limited.

A pr-viously identified element, ET.2 (2, of Error Tolerance

dealt with checking input for reasonableness. This capability

is required to prevent providing data to a function for which

it is not defined or its degree of precision is not acceptable,

etc. This is necessary capability from an error tolerance

viewpoint. From a generality viewpoint, the smaller the subset

B-43

i~r iu ,tlri ,'/ ,.
,

' .',

of all possible inputs to which a function can be applied the
less general it is. Thus, this measure is based on the number
of modules which are data value limited. This cin be deter-

mined at design and implementation.
"

Expandability
EX.l Data Storage Expanbi n Measure (design and implementation phase at

system level). The metric is the sum of the scores of the following appli-

cable elements divided by the number of applicable elements.

(1) Logical processing independent of storage specification/require-

ments. The logical processing of a module is to be independent

of storage size, buffer space, or array sizes. The design pro-

vides for variable dimensions and dynamic array sizes to be defined

parametrically. The metric is based on the number of modules con-

taining hard-coded dimensions which do not exemplify this concept.

(2) Percent of memory capacity uncommitted (implementation only).

The amount of memory available for expansion is an important mea-

sure. This measure identifies the percent of available memory

which has not been utilized in implementing the current system.

EX.2 Extensibility Measure (design and implementation phases at the system

level). The metric is the sum of the scores of the following applicable

elements divided by the number of applicable elements.

B-44

1~'

(1) Accuracy, convergence, timing attributes which control processing

are parametric.

A module which can provide varying degrees of convergence or timing

to achieve greater precision provides this attribute of extensibil-

ity. Hard-coded control parameters, counters, clock values, etc.

violate this measure. This measure is based on the number of mod-

ules which do not exemplify this characteristic. A determination

can be made during design and implementation.

(2) Modules table driven.

The use of tables within a module facilitates different representa-

tions and processing characteristics. This measure which can be

applied during design and implementation is based on the number of

modules which are not table driven.

(3) Percent of speed capacity uncommitted (implementation only).

A certain function may be required in the performance requirements

specification to be accomplished in a specified time for overall

timing objectives. The amount of time not used by the current

implementation of the function is processing time available for

potential expansion of computational capabilities. This measure

identifies the percent of ttal processing time that is

uncommitted.

Instrumentation

IN.1 Module testing measure (design and implementation phases, first at mod-

ule level then system level). The system level metric is an average of all

module measures. The module measure is the average score of the following

two elements:

(1) Path coverage.

Plans for testing the various paths within a module should be made

during design and the test cases actually developed during imple-

mentation. This measure identifies the number of paths planned to

be tested divided by the total number of paths.

(2) Input parameters boundary tested.

The other aspect of module testing involves testing the input

B-45

ranges to the module. This is done by exercising the module at the

various boundary values of the input parameters. Plans to do this

must be specified during design and coded during implementation.

The measure is the number of parameters to be boundary tested

divided by the total number of parameters.

IN.2 Integration Testing Measure (design and implementation phases at system

level). The metric is the averaged score of the following two elements.

(1) Module interfaces tested,.i

One aspect of integration testing is the testing of all module to

module interfaces. Plans to accomplish this testing are prepared

during design and the tests are developed during implementation.

The measure is based on the number of interfaces to be tested

divided by the total number of interfaces.

(2) Performance requirements (timing and storage) coverage.

The second aspect of integration testing involves checking for com-

pliance at the module and subsystem level with the performance

requirements. This testing is planned during design and the tests

are developed during implementation. The measure is the number

of performance requirements to be tested divided by the total

number of performance requirements.

B-46

9,

IN.3 System Testing Measure (design and implementation phases at the system

level). The metric is the averaged score of the two elements below.

(1) Module Coverage.

One aspect of system testing which can be measured as early as the

design phase is the equivalent to path coverage at the module level.

For all system test scenarios planned, the percent of all of the

modules to be exercised is important.

(2) Identification of test inputs and outputs in summary form.

The results of tests and the manner in which these results are

displayed are very important to the effectiveness of testing. This

is especially true during system testing because of the potentially

large volume of input and output data. This measure simply identi-

fies if the capability exists to display test inputs and outputs

in a summary fashion. The measure can be applied to the plans

and specifications in the design phase and the development of

this capability during implementation.

Self Descriptiveness

SD.1 Quantity of Comments (implementation phase at module level first and

then system level). The metric is the number of comment lines divided by the

total number of lines in each module. Blank lines are not counted. The

average value is computed for the system level metric.

B-47

0. A .

SD.2 Effectiveness of Comments Measure (implementation phase at system level).

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Modules have standard formatted prologue comments.

The items to be contained in the prologue comments are listed in

Table 6.2-1. This information is extremely valuable to new

personnel who have to work with the software after development,

performing maintenance, testing, changes, etc. The measure at

the system level is based on the number of modules which do not

comply with a standard format or do not provide complete information.

(2) Comments set off from code in uniform manner.

Blank lines, bordering asterisks, specific card columns are some of

the techniques utilized to aid in the identification of comments.

The measure is based on the number of modules which do not follow

the conventions established for setting off the comments.

(3) All transfers of control and destinations commented.

This form of comment aids in the understanding and ability to follow

the logic of the module. The measure is based on the number of

modules which do not comply.

(4) All machine dependent code commented.

Comments associated with machine dependent code are important not

only to explain what is being done but also serves to identify

that portion of the module as machine dependent. The metric is

based on the number of modules which do not have the machine

dependent code commented.

(5) All non-standard HOL statements commented.

A similar explanation to (4) above is applicable here.

B-48

S---.-.. -

(6) Attributes of all declared variables commented.

The usage, properties, units, etc., of variables are to be explained

in comments. The measure is based on the number of modules which do

not follow this practice.

(7) Comments do not just repeat operation described in language.

Comments are to describe why not what. A comment, increment A by 1,

for the statement A=A+1 provides no new information. A comment,

increment the table look-up index, is more valuable for under-

standing the logic of the module. The measure is based on the

number of modules in which comments do not explain the why's.

SD.3 Descriptiveness of Implementation Language Measure (implementation

phase at system level). The metric is the sum of the scores of the following

applicable elements divided by the number of applicable elements.

(1) High Order Language used.

An HOL is much more self-descriptive than assembly language. The

measure is based on the-number of modules which are implemented,

in whole or part, in assembly or machine language.

(2) Variable names (mnemonics) descriptive of physical or functional

property represented.

While the metric appears very subjective, it is quite easy to

identify if variable names have been chosen with self-

descriptiveness in mind. Three variable names such as NAME,

POSIT, SALRY are far better and more easily recognized as bet-

ter than Al, A2, A3. The measure is based on the number of

modules which do not utilize descriptive names.

B-49

tea.- -

I

(3) Source code logically blocked and indented.

Techniques such as blocking, paragraphing, indenting for specific
constructs are well established and are to be followed uniformly
with a system. This measure is based on the number of modules

which do not comply with a uniform technique.

(4) One statement per line.

The use of continuation statements and multiple statements per line

causes difficulty in reading the code, The measure is the number

of continuations plus the number of multiple statement lines divided

by the total number of lines for each module and then averaged over
all of the modules in the system.

Execution Efficiency

EE.I Performance Requirements allocated to design (design phase at system

level). Performance requirements Tor the system must be broken down and

allocated appropriately to the modules during the design. This metric simply

identifies if the performance requirements have (1) or have not (0) been

allocated during the design.

EE.2 Iterative Processing Efficiency Measure (design and implementation

phases at module level first). The metric at the module level is the sum of

the scores of the following applicable elements divided by the number of

elements. At the system level it is an averaged score for all of the modules.

(1) Non-loop dependent computations kept out of loop.

Such practices as evaluating constants in a loop are to be avoided.

This measure is based on the number of non-loop dependent statements

B-50

found in all loops in a module. This is to be measured from a

detailed design representation during design and from the code

during implementation.

(2) Performance Optimizing Compiler/Assembly language used (implementation

only).

This is a binary measure which identifies if a performance optimizing

compiler was used (1) or if assembly language was used to accomplish

performance optimization (1) or not (0).

(3) Compound expressions defined once (implementation only).

Repeated compound expressions are to be avoided from an efficiency

standpoint. This metric is based on the number of compound

expressions which appear more than once.

(4) Number of overlays.

The use of overlays requires overhead as far as processing time.

This measure, the inverse of the number of overlays, reflects that

overhead. It can be applied during design when the overlay scheme

is defined and during implementation.

(5) Free of bit/byte packing/unpacking in loops.

This is a binary measure indicating the overhead involved in bit/byte

packing and unpacking. Placing these activities within loops should

be avoided if possible.

B-51

''A, ,..,

(6) Module linkages (implementation only, requires execution).

This measure essentially represents the inter-module communication

overhead. The measure is based on the amount of execution time

spent during module to module communication.

(7) Operating System linkages (implementation only, requires execution).

This measure represents the module to OS communication overhead.

The measure is based on the amount of execution time spent during

module to OS communications.

(8) Efficient Use of storage facility.

This measure represents an evaluation of the utility of the storage

facility.

EE.3 Data Usage Efficiency Measure (design and implementation phases appliea

at module level first). The metric at the module level is the sum of the

scores of the following applicable elements divided by the number of applicable

elements. The system metric is the averaged value of all of the module metric

values.

(1) Data grouped for efficient processing.
The data utilized by any module is to be organized in the data base,

buffers, arrays, etc., in a manner which facilitates efficient

processing. The data organization during design and implementation is

to be examined to provide this binary measure.

(2) Variables initialized when declared (implementation only).

This measure is based on the number of variables used in a module

which are not initialized when declared.

B-52

'I.

,'4. .4

Efficiency is lost when variables are initialized during execution

of a function or repeatedly initialized during iterative processing.

(3) No mix-mode expressions (implementation only).

Processing overhead is consumed by mix-mode expressions which are

otherwise unnecessary. This measure is based on the number of mix-

mode expressions found in a module.

(4) Common choice of units/types.

For similar reasons as expressed above (3) this convention is to be

followed. The measure is the inverse of the number of operations

performed which have uncommon units or data types.

(5) Data indexed or referenced for efficient processing.

Not only the data organization, (1) above, but the linkage scheme

between data items effects the processing efficiently. This is a

binary measure of whether the indexing utilized for the data was

chosen to facilitate processing.

Storage Efficiency

SE.A Storage Efficiency Measure (design and implementation phases at module

level first then system level). The metric at the module level is the sum of

the scores of the following applicable elements divided by the number of

applicable elements. The metric at the system level is the averaged value of

all of the module metric values.

(1) Storage Requirements allocated to design (design phase only).

fThe storage requirements for the system are to be allocated to the

individual modules during design. This measure is a binary measure

of whether that allocation is explicitly made (1) or not (0).

IB

(2) Virtual Storage Facilities Used.

The use of virtual storage or paging techniques enhances the

storage efficiency of a system. This is a binary measure of whether

these techniques are planned for and used (1) or not (0).

(3) Common data defined only once (implementation only).

Often, global data or data used comonly are defined more than

once. This consumes storage. This measure is based on the number

of variables that are defined in a module that have been defined

elsewhere.

(4) Program Segmentation.

Efficient segmentation schemes minimize the maximum segment length

to minimize the storage requirement. This measure is based on

the maximum segment length. It is to be applied during design when

estimates are available and during implementation.

(5) Dynamic memory management used.

This is a binary measure emphasizing the advantages of using dy-

namic memory management techniques to minimize the amount of

storage required during execution. This is planned during design

and used during implementation.

(6) Data packing used (implementation only).

While data packing was discouraged in EE.2 (5) in loops because of

the overhead it adds to processing time, in general it is bene-

ficial from a storage efficiency viewpoint. This binary measure

applied during implementation recognizes this fact,

B-54

(7) Storage optimizing compiler/asse;mibly language used (implementation

only).

This binary measure is similar to EE.2 (2) except from the view-

point of storage optimization.

Access Control

AC.1 Access Control Checklist (all three phases at system level).

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) User I/0 Access controls provided.

Requirements for user access control must be identified during the

requirements phase. Provisions for identification and password

checking must be designed and implemented to comply with the require-

ments. This binary measure applied at all three phases identifies

whether attention has been placed on this area.

(2) Data Base Access controls provided.

This binary measure identifies whether requirements for data base

controls have been specified, designed and the capabilities imple-

mett-&ted. Examps-of-data base access controls are authorization

tables and privacy locks.

B-55

(3) Memory protection across tasks.

Similar to (1) and (2) above, this measure identifies the progression

from a requirements statement to implementation of memory protection

across tasks. Examples of this type of protection, often times pro-

vided to some degree by the operating system, are preventing tasks from

invoking other tasks, tasks from accessing system registers, and the

use of privileged commands.

Access Audit

AA.1 Access Audit Checklist (all three phases at system level).

The metric is the averaged score of the following two elements.

(1) Provisions for recording and reporting access.

A statement of the requirement for this type capability must exist in
the requirements specification. It is to be considered in the design

specification, and coded during implementation. This binary metric

applied at all three phases identifies whether these steps are

being taken. Examples of the provisions which might be considered

would be the recording of terminal linkages, data file accesses,

and jobs run by user identification and time.

(2) Provisions'for immediate indication of access violation.

In addition to (1) above, access audit capabilities required

might include not only recording accesses but immediate identifica-

tion of unauthorized accesses, whether intentional or not. This

measure traces the requirement, design, and implementation of

provisions for this capability.

B-56

!

Operability

OP.l Operability Checklist (all three phases at system level).
The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) All steps of operation described.

This binary measure applied at all three phases identifies whether

the operating characteristics have been described in the require-
ments specification, and if this description has been transferred

into an implementable description of the operation (usually in an

operator's manual). The description of the operation should cover

the normal sequential steps and all alternative steps.

(2) All error conditions and responses appropriately described to
operator.
The requirement for this capability must appear in the requirements

specification, must be cinsidered durinq design, and coded during

implementation. Error conditions must be clearly identified by

the system. Legal responses for all conditions are to be either

documented and/or prompted by the system. This is a binary mea-

sure to trace the evolution and implementation of these capabilities.

(3) Provisions for operator to interrupt, obtain status, save, modify,

and continue processing.

The capabilities provided to the operator must be considered during

the requirements phase and then designed and implemented. Examples

of operator capabilities include halt/resume and check pointing.

This is a binary measure to trace the evolution of these

capabilitier

(4) Number of operator actions reasonable (implementation only, re-

quires execution).

The number of operator errors can be related directly to the number

of actions required during a time period. This measure is based on

*~k the amount of time spent requirag manual operator actions divided

by the total time required for the job.

B-57

. A. a

.o 1

(5) Job set up and tear down procedures described (implementation only).

The specific tasks involved in setting up a job and completing it

are to be described. This is usually documented during the imple-

mentation phase when the final version of the system is fixed.

This is a binary measure of the existence of that description.

(6) Hard copy log of interactions maintained (design and implementation

phases).

This is a capability that must be planned for in design and coded

during implementation. It assists in correcting operational errors,

improving efficiency of operation, etc. This measure identifies

whether it is considered in the design and implementation phases (1)

or not (0).

(7) Operator messages consistent and responses standard (design and

implementation phases).

This is a binary measure applied during design and implementation to

insure that the interactions between the operator and the system are

simple and consistent. Operator responses such as YES, NO, GO, STOP,

are concise, simple, and can be consistently used throughout a system.

Lengthy, differently formated responses not only provide difficulty

to the operatot but also require complex error checking routines.

Training

TN.I Training Checklist (design and implementation at system level). The

metric is the sum of the scores of the following applicable elements divided by

the number of applicable elements.

(1) Lesson Plans/Training Material developed for operators, end users,

maintainers (implementation phase only).

This is a binary measure of whether this type documentation is

provided during the implementation phase.

B-58

(2) Realistic simulated exercises provided (implementation only).

This is a binary measure of whether exercises which represent the

operational environment, are developed during the implementation

phase for use in training.

(3) Sufficient 'help' and diagnostic information available on-line.

This is a binary measure of whether the capability to aid the

operator in familiarization with the system has been designed and

built into the system. Provision of a list of legal commands or a

list of the sequential steps involved in a process are examples.

Communicativeness

CM.1 User Input Interface Measure (all three phases at system level).

The metric is the sum of the scores of the following applicable elements divi-
ded by the number of applicable elements.

(1) Default values defined (design and implementation).

A method of minimizing the amount of input required is to provide

defaults. This measure, applied during design and implementation,

is based on the number of defaults allowed divided by the tutal
number of input parameters.

(2) Input formats uniform (c'esign and implementation).

The greater the number of input formats there are the more difficult

the system is to use. This measure is based on the total number of

input formats.

(3) Each input record self-identifying.

Input records which have self-identifying codes enhance the accuracy

of user inputs. This measure is based on the number of input

records that are not self identifying divided by the total number of

input records. It is to be applied at design and implementation.

B-59

6i

. bmm mi~l mm m m mi

.f

(4) Input can be verified by user prior to execution (design and

implementation).

The capability, displaying input upon request or echoing the input

automatically, enables the user to check his inputs before

processing. This is a measure of the existence of the design and

implementation of this capability.

(5) Input terminated by explicitly defined logical end of input (design

and implementation).

The user should not have to provide a count of input cards. This is

a binary measure of the design and implementation of this capability.

(6) Provision for specifying input from different media.

The flexibility of input must be decided during the requirements

analysis phase and followed through during design and implementation.

This is a binary measure of the existence of the consideration

of this capability during all three phases.

CM.2 User Output Interface Measure (all three phases at system level).

The metric is the sum of the scores of the following applicable elements divided

by the number of applicable elements.

(1) Selective Output Controls.

The existence of a requirement for, design for, and implementation

of selective output controls is indicated by this binary measure.

Selective controls include choosing specific outputs, output formats,

amount of output, etc.

(2) Outputs have unique descriptive user oriented labels (design and

implementation only).

This is a binary measure of the design and implementation of unique

output labels. In addition, the labels are to be descriptive to the

user. This includes not only the labels which are used to reference

an output report but also the title, column headings, etc. within that

report.

B-60

SI

IV

(3) Outputs have user oriented units (design and implementation).

This is a binary measure which extends (2) above to the individual
output items.

(4) Uniform output labels (design and implementation).

This measure corresponds to CM.1 (2) above and is the inverse of

the number of different output formats.

(5) Logical groups of output separated for user examination (design

and implementation).

Utilization of top of page, blank lines, lines of asterisks, etc.,

provide for easy identification of logically grouped output. This

binary measure identifies if these techniques are used during design

and implementation.

(6) Relationship between error messages and outputs is unambiguous

(design and implementation).

This is a binary measure applied during design and implementation

which identifies if error messages will be directly related to the

output.

(7) Provision for redirecting output to different media.

This is a binary metric which identifies if consideration is given

to the capability to redirect output to different media during

requirements analysis, design, and implementation.

Software System Independence

SS.1 Software System Independence Measure (design and implementation phases

at system level). The metric is the sum of the scores of the following applic-
able elements divided by the number of applicable elements.

B-61

U.L

(1) Dependence on Software System Utility programs,

The more utility programs, library routines, and other system

facilities that are used within a system, the more dependent

the system is on that software system environment, A SORTfutility in one operating system is unlikely to be exactly
similar to a SORT utility in another. This measure is based

on the number of references to system facilities in a module

divided by the total number of lines of code in the module.

It is to be applied during design and implementation.

(2) Common, standard subset of language used,
The use of nonstandard constructs of a language that may be
available from certain compilers cause conversion problems

when the software is moved to a new software system environment.

This measure represents that situation. It is based on the
number of modules which are coded in a non-standard subset of

the language. The standard subset of the language is to be

established during design and adhered to during implementation.

B-62

Machine Independence
MI.1 Machine Independence Measure (design and implementation at system level).

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Programming language used available on other machines.

This is a binary measure identifying if the programming language

used is available (1) on other machines or not (0). This means

the same version and dialect of the language.

(2) Free from input/output references.

Input and output references bind a module to the current machine con-

figuration. Thus the fewer modules within a system that contain

input and output references, the more localized the problem becomes

when conversion is considered. This measure represents that fact

and is based on the number of I/O references within a module.

It is to be applied during design and implementation.

(3) Code is independent of word and character size (implementation only).

Instructions or operations which are dependent on the word or

character size of the machine are to be either avoided or param-

etric to facilitate use on another machine. This measure applied

to the source during implementation is based on the number of

modules which contain violations to the concept of independence of

word and character size.

(4) Data representation machine independent (implementation only).

The naming conventions (length) used are to be standard or com-

patible with other machines. This measure is based on the number

of modules which contain variables which do not conform to standard

data representations.

B-63

Communi cations Commonal i ty
CC.1 Communications Commonality Checklist (all three phases at system
level). The metric is the sum of the scores of the following applicable
elements divided by the number of applicable elements.

(1) Definitive statement of requirements for communcation with other
systems (requirements only).
During the requirement phase, the communication requirements
with other systems must be considered. This is a binary measure of

the existence of this consideration.

(2) Protocol standards established and followed.
The communcation protocol standards for communication with other

systems are to be established during the design phase and followed

during implementation. This binary measure applied at each of
these phases indicates whether the standards were established and

followed.

(3) Single module interface for input from another system.
The more modules which handle input the more difficult it is to
interface with another system and implement standard protocols.

This measure based on the inverse of the number of modules which

handle input is to be applied to the design specification and source

code.

(4) Single module interface for output to another system
For similar reasons as (3) above this measure is the inverse of

the number of output modules.

Data Commonality
DC.1 Data Commonality Checklist (all three phases at system level). The
metric is the sum of the scores of the following applicable elements divided
by the number of applicable elements.

B-64

. .-ea

(1) Definitive statement for standard data representation for communica-

tions with other systems (requirements only).

This is a binary measure of the existence of consideration for

standard data representation between systems which are to be interfaced.

This must be addressed and measured in the requirements phase.

(2) Translation standards among representations established and followed

(design and implementation).

More than one translation from the standard data representations used

for interfacing with other systems may exist within a system. Standards

for these translations are to be established and followed. This binary

measure identifies if the standards are established during design and

followed during implementation.

(3) Single module to perform each translation (design and implementation).

For similar reasons as CC.1 (3) and (4) above, this measure is the

inverse of the maximum number of modules which perform a translation.

Conciseness

CO.1 Halstead's Measure (implementation phase at module level first then system

level). The metric is based on Halstead's concept of length ([HALSM77]).

The observed length of a module is

No = NI + N2 where:
Ni = total usage of all operators in a module
N2 = total usage of all operators in a module

The calculated length of a module is

Nc = n11og 2nI + n21og2n2 where:

nI = number of unique operators in a module

n2 = number of unique operators in a module

The metric is normalized as follows:

1 I Nc - NO1 or,

N0 or

0 if I Nc - NoI greater than 1

At a system level the metric is the averaged value of all the module metric

values. B-65

.

REFERENCES

[ARRK74] Arrow, K. J.

"Limited Knowledge and Economic Analysis"

American Economic Review, March 1974.

* [AR18-1] AR18-1 Management Information Systems Policies,

Objectives, Procedures, and Responsibilities.

[BAUF73] Bauer, F. L. (Ed)
Advanced Course on Software Engineering

Springer - Verlag, Berlin, 1973.

[BOEB73] Boehm, B.

"Software and Its Impact: A Quantitative Report"

Datamation, April 1973.

[BOWJ78] Bower, J. L.

"The Business of Business is Serving Markets"

American Economic Review, May 1978, Vol. 68, No. 2.

[BRAR61] Brady, R. A.

Organization, Automation and Society: The Scientific

Revolution in Industry, University of California Press,

Berkeley and Los Angeles, 1961.

[CASM77] Cashman, M. W.

"An Interview With Professor Dr. Edsger W. Dijkstra"

Datamation, May 1977.

[CAVJ78] Cavano, J., McCall, J.

"A Framework for the Measurement of Software Quality",

Proceedings ACM Software Quality Assurance Workshop,

November 1978.

4.; R- 1

IL!

REFERENCE (continued)

[CHAR78] Chapman, R.

"Facing Financial Realities in Banking"

iI Datamation, June 1978.

[CHER] Chevance, R. J., et.al.
"Static Profile and Dynamic Behavior of COBOL Program"

SIGPLAN, reference open.

[CONS75] Constantine, L., Yourdon, E.

"Structured Design , Yourdon Press, N. Y., 1975

[COTI75] Cotton, I. W.

"Microeconomics and the Market for Computer Services"
ACM Computing Surveys, Vol. 7, No. 2, June 1975.

(DeMR76] DeMillo, R. A., et.al.

"Can Structured Programs be Efficient?", SIGPLAN Notices,

October 1976.

[DEWR78] Dewar, R., Hage, J.

"Size, Technology, Complexity, and Structual Differentiatiun:
Toward a Theoretical Synthesis", Administrative Science

Quarterly, pp 111-136, March 1978.

[DIJE69] Dijkstra, E. W.

NATO "Science Committee Report, January 1969".

LDIJE75] Dijkstra, E. W.
"Correctness Concerns and, Among Other Things, Why They
are Resented", Proceedings of the 1975 International

Conference on Reliable Software, Los Angeles.

R-2

A 4.....- -... , , ! .

REFERENCE (continued)

[DoDMAN) DoD Manual 4120.17-M

Automated Data Systems Documentation Standards

[DZIW78] Dzida, W., et.al.
"User-Perceived Quality of Interactive Systems", Proceedings
of 3rd International Conference on Software Engineering.

[FAGM76] Fagan, M. E.

"Design and Code Inspections and Process Control in the
Development of Programs", IBM Technical Report TR 00.2763,

Poughkeepsie, 1976.

[FITA78] Fitzsimmons, A, Love, T.

"A Review and Evaluation of Software Science", ACM

Computing Surveys, Vol. 10, No. 1, March 1978.

FLE3723 Fleiss, J. E., et.al.
"Programming for Transferability"

NTIS Memorandum AD-750 897, 1972.

[FOSL76] Fosdick, L. D., Osterweil, L. J.

"Data Flow Analysis in Software Reliability", ACM Computing
Surveys Special Issue: Reliable Software I, 1976.

[FRIR78] Fried, R.

"Monitoring Data Integrity"

Datamation, June 1978.

[FAIE78] Gainer, E., et.al.

"The Design of a Reliable Applications System"

3rd Proceedings.

R-3

! Ii

REFERENCE (continued)

[GALJ73] Galbraith, J.
Designing Complex Organizations
Addison-Wesley, Readinig, Mass 1973.

[G-TC78] Getz, C. W.

"DP's Role is Changing"

Datamation, February 1978.

[GOLJ73] Goldberg, J., ed.

Proceedings of the Symposium on the High Cost of Software,

Monterey, 1973.

[GORG71] Gorry, G. A., Scott Morton, M.S.

"A Framework for Management Information Systems"

Sloan Management Review, Vol. 13, No. 1,

Fall 1971, MIT Cambridge, Mass.

[HANS76] Hantler, S. L., King, J. C.

"An Introduction to Proving the Correctness of Programs"

ACM Computing Surveys Special Issue: Reliable Software I,

September 1976.

[HECS77] Hecht, M. S.
Flow Analysis of Computer Programs, Elsevier North-Holland,

New York, 1977.

[HETB78] Hetzel, B.

"A Perspective on Software Development"

3rd Proceedings.

R-4

VI

REFERENCES (continued)

[HIBP78] Hibbard, P. G., Schuman, S. A.

Constructing Quality Software, IFIP Workinig Conference,

Novosibirsk, USSR North Holland 78

[HIRA70] Hirschman, A. 0.

Exit, Voice, and Loyalty: Responses to Decline in Firms,

Organizations and States

Harvard University Press, Cambridge, Mass 1970.

[HOAC78] Hoare, C.A.R.

"Software Engineering: A Keynote Address", 3rd Proceedings

of the International Conference on Software Engineering,

Atlanta, 1978.

[HOLJ77] Holton, J. B.

"Are the New Programing Techniques Being Used?"

Datamation, July 1977.

[HORJ73] Horning, J. J., Randell, B.

"Process Structuring"

ACM Computing Surveys, Vol. 5, No. 1, March 1973.

[JACM78] Jackson, M. A.

"Information Systems: Modeling, Sequencing and Transformations"

3rd Proceedings of the International Conference on Software

Engineering, Atlanta, 1978.

[KEEP77] Keen, P. G. W., Gerson, E. M.

"The Politics of Software Systems Design"

Datamation, November 1977.

* .- R-5

. @ ,, ., ,w

REFERENCES (continued)

[KINJ78] King, J. L., Schrems, E. L.

"Cost-Benefit Analysis in Information Systems Development

and Operation", ACM Computing Surveys, Vol. 10, No. 1,

March 1978.

[KLEL76] Klein, L.

New Forms of Work Organization

Cambridge University Press, Cambridge, 1976.

[KLIR78] Kling, R.
"Value Conflicts and Social Choice in Electronic Funds

Transfer System Developments", CACM, Vol. 21, No. 8,

August 1978.

[KNUD73] Knuth, D. E.

"A Review of "Structured Programming"", Computer Science
Dept. STAN-CS-73-371, Stanford University.

[KOSS74] Kosaraju, S. R., Ledgard, M. F.

Concepts in Quality Software Design
NBS Technical Note 842, Washington 1974.

[KURS75] Kurki-Suonio, R.

"Towards Better Structured Definitions of Programming

Languages", STAN-CS-75-500 Computer Science Dept.,
Stanford University, 1975.

[LEIH78] Leibenstein, H.

"On the Basic Proposition of X-Inefficiency Theory"
American Economic Review, May 1978.

R- 6

WNW=-

REFERENCES (continued)

[LINT76] Linden, T. A.

"Operating System Structures to Support Security and

Reliable Software", ACM Computing Surveys, Vol. 8,

No. 4, 1976.

[LITB78] Littlewood, B.

"How to Measure Reliability, and How Not to..."

3rd Proceedings of the International Conference on Software

Engineering, Atlanta, 1978.

[LOVL77] Love, L. T.

Relating Individual Differences in Computer Programming

Performance to Human Information Processing Abilities,

Ph.D Thesis University of Washington, 1977.

[LOVT77a] Love, T.

An Experimental Investigation of the Effect of Program

Structure on Program Understanding,

G.E. Technical Information Series TIS77ISPO06.

[LOVT77b] Love, T.

A Preliminary Experiment to Test Influences on Human

Understanding of Software,

G. E. Technical Information Series TIS771SPOO7.

[LUCH74] Lucas, H. C.

Toward Creative Systems Design

Solumbia University Press, New York 1974.

[LYOG78] Lyon, G.

"COBOL Instrumentation and Debugging: A Case Study"

NBS Special Publication 500-26, U. S. Dept. of Commerce 1978.

R-7

sJAI"

REFERENCES (continued)

[MARR71] Marris, R., Wood, A., eds.
The Corporate Economy Growth, Competition and Innovative

Potential, Harvard University Press, Cambridge, Mass, 1971.

[MATM78] Matsumoto, M.

"Design and Quality in MIS Environments"

Software Metrics Enhancement Task Internal Memorandum No.

August 1978.

[McCC78] McClure, C. L.

Reducing COBOL Complexity through Structured Programming

Van Nostrand Reinhold Co., 1978.

[McCJ77a] McCall, J., Richards, P., Walters, G.
"Factors in Software Quality", 3 Vols. (A049014) (A049015)

RADC TR 77-369, November 1977 (A049055)

[McCJ77b] McCall, J., Richards, P., Walters, G.

"Metrics for Software Quality Evaluation and Prediction"

Proceedings of the NASA/Goddard Second Summer Engineering

Workshop, September 1977.

[McCJ78a] McCall, J.

"The Utility of Software Quality Metrics in Large-Scale

Software System -elopments", Proceedings of the Second

Software Life Cycle Management Workshop, August 1978.

[McCJ78b] McCall, J.

"Software Quality: The Illusive Measurement"
Software Quality Management Conference, September 1978.

R-8

i I ii

REFERENCES (continued)

[McCP78] McCarter, P. M.

"Where is the Industry Going?"

Datamation, February 1978.

[McCK75] McKeeman, W. M.

"On Preventing Programming Languages from Interfering

with Programming", IEEE Transactions on Software

Engineering, March 1975.

[MILSTD] MIL-STD-490

Specification Practices

[MIY178] Miyamoto, I.

"Toward an Effective Software Reliability Evaluation"

3rd Proceedings of the International Conference on Software

Engineering, Atlanta, 1978.

[MYEG75] MYERS, G. S.

Reliable Software Through Composite Design

Petrocelli/Charter, 1975.

[NOBD77] Noble, D.

America By Design, Harper Row,

New York, 1977.

[PAND76] Panzl, D. J.
"Test Procedures: A New Approach to Software Verification"

Proceedings of the Second International Conference

on Software Engineering, San Francisco 1976.

R-9

V -

to o&

REFERENCES (continued)

[PARE75] Parker, E. B.

"Social Implications of Computer/Telecommunications

Systems",

Conference on Computer/Telecommunications Policy -

Organization for Economic Co-operation and Development

Paris, 4-6 February 1975.

[PARD75] Parnas, D. L.
"The Influence of Software Structure on Reliability

Proceedings of the International Conference on Reliable

Software, Los Angeles, 1975.

[PEDJ78] Pederson, J. T., Buckle, J. K.

"Kongsberg's Road to an Industrial Software Methodology"

3rd Proceedings.

[PEED78] Peeples, D. E.

"Measure for Productivity"

Datamation, May 1978.

[PETJ77] Peterson, J. L.

"Petri Nets", ACM Computing Surveys, Vol. 9, No. 3, 1977

[PODJ77] Podolsky, J. L.

"Horace Builds a Life Cycle",
Datamation, November 1977.

LPR073] "Proceedings of a Symposium on the High Cost of Software"

AFOSR, ARO, ORR, 1973.

[PRO75] "Proceedings of the International Conference on Reliable

Software", ACM, 1975.

R-0 0

REFERENCES (continued)

[PYSA78] Pyster, A., Dutra, A.

"Error-Checking Compilers and Portability"

Software Practice and Experience, Vol. 8, Issue 1,

January - February 1978.

[RICP76] Richards, P., Chang, P.

"Localization of Variables: A Measure of Complexity"

GE TIS 76CIS07, December 1976.

[RICD70] Richardson, D. W.

Electric Money: Evolution of an Electronic Funds

Transfer System, MIT Press, Cambridge, Mass, 1970.

[RIDW78] Riddle, W. E., et.al.

"Behavior Modelling During Software Design"

3rd Proceedings of the International Conference on Software

Engineering, Atlanta, 1978.

[ROBL75] Robinson, L., et.al.

"The Verification of COBOL Programs"

NTIS Memorandum, J-,ne 1975.

[ROGE76] Rogers, E. M., Agarwala-Rogers, R.

Communications in Organizations
The Free Press, New York, 1976.

[SAMS76] "Contractor Software Quality Assurance Evaluation Guide"

SAMSO Pamphlet 74-2, Los Angeles, 1976.

[SCOM] Scott Morton, M.S.

"Some Perspectives on Computerized Management Decision

Making Systems", Unpublished draft

R-ll

REFERENCES (continued)

[SHAW693 Sharpe, W. F.

The Economics of Computers

Columbia University Press, New York, 1969.

[SPEA74] Spenct, A. M.

"An Economist's View of Information"

Annual Review of Information Science, Vol. 9, 1974.

[STAR73] Stamper, R.

Information in Business and Administrative Systems

John Wiley and Sons, New York, 1973.

[STR74] "Structured Programing Series"

RADC, 15 Vols., 1974-1975.

[TAGW77] Taggart, W. M. Jr, Tharp, M. 0.

"A Survey of Information Requirements Analysis Techniques"

ACM Computing Surveys, Vol. 9, No. 4, 1977.

[THOD78] Thomas, D. R. E.

"Strategy is Different in Service Businesses"
Harvard Business Review, July-August 1978

pp 158-165, Cambridge, Mass.

[USACSCM] USACSC Manual 18-1

Automatic Data Processing System Development, Maintenance

and Documentation Standards and Procedures Manual.

[VINW77] Vinson, W. D., Heany, D. F.

"Is Quality Out of Control?"

Harvard Business Review, November-December 1977.

R-12

II Il I I I |1 iIE] Ill was "

REFERENCES (continued)

[WALG7Ba3 Walters, G., McCall, J.

"The Development of Metrics for Software R&D"
1978 Proceedings, Annual Reliability and Mintainability
Symposium, January 1978.

[WALG78b] Walters, G.

"Application of Metrics to Software Quality Management

Programs", Software Quality Management Conference,

September 1978.

[WEGP76] Wegner, P.

"Research Paradigms in Computer Science"

Proceedings of the 2nd International Conference on Software

Engineering, San Francisco, 1976.

[WEGP78] Wegner, P.

"Research Directions in Software Technology" s

3rd Proceedings.

[WIRN65] With, N.

"On Certain Basic Concepts of Programming Languages"

Technical Report No. CS65, Computer Science Department,

Stanford University, 1965.

[WONG78] Wong, G.

"Design Methodology for Computer System Modeling ToOls"

Symposium on Modeling and Simulation Methodology,

August 1978, Rehorot, Isreal.

[YEHR76] Yeh, R. T., ed.

ACM Computing Surveys Special Issue! Reliable Software I:

Software Validation 1976. ,,

R-13

",

REFERENCES (Continued)

[CULK79] Culik

"The Cyclomatic Number and the Normal Number of Programs"
ACM SIGPLAN Notices, Vol. 14, No. 4, April 1979

[MILE79] Miller, E.

"Some Statistics from the Software Test Factory"
ACM Software Engineering Notes, Vol. 4, No.1, January 1979.

[JOHJ75] Johnson, J.P.

"Software Reliability Measurement"jNTIS AD-AO19-147, December 1975.
[KAUR75] Kauffman, R.

"COBOL/Structured Programming - Win the Marriage Survive"

Infosystems, February 1975.

[GELD791 Gelperin, D.

"Testing Maintainability"

ACM Software Engineering Notes, Vol. 4, No. 2, April 1979.

[ALJM79] Al-Jarrah, M., et. al.
"An Empirical Analysis of COBOL Programs'

Software - Practice and Experience, Vol. 9, Issue No. 5,

May 1979.

[MCKJ79] McKissick, J., et. al.

"The Software Development Notebook - A Proven Technique"
Proceedings 1979 Annual Reliability and Maintainability
Symposium, January 1979

[IMP74] "Improved Programming Technologies.- An Overview"

IBM TR-GC20-1850-O, 1974.

R-14

IN,

REFERENCES (Continued)

[LIEB78] Lientz, B., et. al.

"Characteristics of Applications Software Maintenance"

Communications of the ACM, Vol. 21, No. 6, June 1978.

[BASV78] Basil, V., et. al.

"Investigating Software Development Approaches"

AFOSR TR-688, August 1978.

[PHIM76] Phister, M.

Data Processing Technology and Economics, Santa Monica

Publishing Co.,.1976.

R-15

V V ,. ,,, .

MISSION

RawAirDeveioprnet Center
RAVC p&1fl6 and executeA tuweth, deveto,ment, te. and.6 eected oacquiL~tion pkogwm in AL~pot oS Comman~d, ConttZ
Comhmunteation6 and Inteltgenze IC31) actZvitiez. Technicat
a.d enegineeAing 4uppo~t w~thin a,'e,6 o .teclzn-c competence
i4 pkovide' .to ESV PuLguLm 0i.,*ceA (P0,6) and o.theA. ESV
etement~s. The p~inc2 pat tehnica2 miz,6aon atea26 ae
.ommflun.catoni, eteetomag9neti guidance a-id cant'Z, .6WL-
veittance 06 gtound a~nd ae'w~pace objeeU . Lntett&gence data
cotection and handting, in6o'imtion 4qy6,tem technotogy,
iono~sphoAic po0opaga.tion, .6otd 6tate 6cien~e6, kcowve
phy6ZcA and etectonZc &ZiabiL~y, maintainabikity and
aompatib.Utyt.

